scholarly journals Corrigendum: The Mechanisms and Boundary Conditions of Drug Memory Reconsolidation

2021 ◽  
Vol 15 ◽  
Author(s):  
Liangpei Chen ◽  
He Yan ◽  
Yufang Wang ◽  
Ziping He ◽  
Qihao Leng ◽  
...  
Author(s):  
Segev Barak ◽  
Koral Goltseker

Alcohol and nicotine are widely-abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue-drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a “memory reconsolidation” process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse prevention therapy.


2016 ◽  
Vol 113 (28) ◽  
pp. E3991-E3992 ◽  
Author(s):  
Matthew P. Walker ◽  
Robert Stickgold

2021 ◽  
Vol 15 ◽  
Author(s):  
Liangpei Chen ◽  
He Yan ◽  
Yufang Wang ◽  
Ziping He ◽  
Qihao Leng ◽  
...  

Drug addiction can be seen as a disorder of maladaptive learning characterized by relapse. Therefore, disrupting drug-related memories could be an approach to improving therapies for addiction. Pioneering studies over the last two decades have revealed that consolidated memories are not static, but can be reconsolidated after retrieval, thereby providing candidate pathways for the treatment of addiction. The limbic–corticostriatal system is known to play a vital role in encoding the drug memory engram. Specific structures within this system contribute differently to the process of memory reconsolidation, making it a potential target for preventing relapse. In addition, as molecular processes are also active during memory reconsolidation, amnestic agents can be used to attenuate drug memory. In this review, we focus primarily on the brain structures involved in storing the drug memory engram, as well as the molecular processes involved in drug memory reconsolidation. Notably, we describe reports regarding boundary conditions constraining the therapeutic potential of memory reconsolidation. Furthermore, we discuss the principles that could be employed to modify stored memories. Finally, we emphasize the challenge of reconsolidation-based strategies, but end with an optimistic view on the development of reconsolidation theory for drug relapse prevention.


2020 ◽  
Author(s):  
Josue Haubrich ◽  
Matteo Bernabo ◽  
Karim Nader

ABSTRACTMemory reconsolidation is a fundamental plasticity process in the brain that allows established memories to be changed or erased. However, certain boundary conditions limit the parameters under which memories can be made plastic. Strong memories do not destabilize, for instance, although why they are resilient is mostly unknown. Here, we extend the understanding of the mechanisms implicated in reconsolidation-resistant memories by investigating the hypothesis that specific modulatory signals shape memory formation into a state that lacks lability. We find that the activation of the noradrenaline-locus coeruleus system (NOR-LC) during strong fear memory encoding increases molecular mechanisms of stability at the expense of lability in the amygdala. Preventing the NOR-LC from modulating strong fear encoding results in the formation of memories that can undergo reconsolidation within the amygdala and thus are vulnerable to post-reactivation interference. Thus, the memory strength boundary condition on reconsolidation is set at the time of encoding by the action of the NOR-LC.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Josué Haubrich ◽  
Matteo Bernabo ◽  
Karim Nader

Memory reconsolidation is a fundamental plasticity process in the brain that allows established memories to be changed or erased. However, certain boundary conditions limit the parameters under which memories can be made plastic. Strong memories do not destabilize, for instance, although why they are resilient is mostly unknown. Here, we investigated the hypothesis that specific modulatory signals shape memory formation into a state that is reconsolidation-resistant. We find that the activation of the noradrenaline-locus coeruleus system (NOR-LC) during strong fear memory encoding increases molecular mechanisms of stability at the expense of lability in the amygdala of rats. Preventing the NOR-LC from modulating strong fear encoding results in the formation of memories that can undergo reconsolidation within the amygdala and thus are vulnerable to post-reactivation interference. Thus, the memory strength boundary condition on reconsolidation is set at the time of encoding by the action of the NOR-LC.


2017 ◽  
Vol 12 (2) ◽  
pp. 290-305 ◽  
Author(s):  
Michael Treanor ◽  
Lily A. Brown ◽  
Jesse Rissman ◽  
Michelle G. Craske

Recent research suggests that the mere act of retrieving a memory can temporarily make that memory vulnerable to disruption. This process of “reconsolidation” will typically restabilize the neural representation of the memory and foster its long-term storage. However, the process of reconsolidating the memory takes time to complete, and during this limited time window, the original memory may be modified either by the presentation of new information or with pharmacological agents. Such findings have prompted rising interest in using disruption during reconsolidation as a clinical intervention for anxiety, posttraumatic stress, and substance use disorders. However, “boundary conditions” on memory reconsolidation may pose significant obstacles to clinical translation. The aim of this article is to critically examine the nature of these boundary conditions, their neurobiological substrates, and the potential effect they may have on disruption of reconsolidation as a clinical intervention. These boundary conditions also highlight potential constraints on the reconsolidation phenomenon and suggest a limited role for memory updating consistent with evolutionary accounts of associative learning for threat and reward. We conclude with suggestions for future research needed to elucidate the precise conditions under which reconsolidation disruption may be clinically useful.


2021 ◽  
Vol 22 (8) ◽  
pp. 4090
Author(s):  
Segev Barak ◽  
Koral Goltseker

Alcohol and nicotine are widely abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue–drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a “memory reconsolidation” process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse-prevention therapy.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Sign in / Sign up

Export Citation Format

Share Document