scholarly journals Identification of Symptomatic Carotid Artery Plaque: A Three-Item Scale Combined Angiography With Optical Coherence Tomography

2021 ◽  
Vol 15 ◽  
Author(s):  
Qingwen Yang ◽  
Hongquan Guo ◽  
Xuan Shi ◽  
Xiaohui Xu ◽  
Mingming Zha ◽  
...  

Introduction: Symptomatic carotid disease conveys a high risk of recurrent stroke. Plaque morphology and specific plaque characteristics are associated with the risk of stroke. This study aimed to evaluate the detailed plaque features by optical coherence tomography (OCT) and develop a simple scale combining clinical indicators, digital subtraction angiography (DSA), and OCT imaging markers to identify symptomatic carotid plaque.Methods: Carotid plaques from consecutive patients who underwent carotid OCT imaging between June 2017 and June 2021 were evaluated. Clinical characteristics, DSA, and OCT data were compared between the symptomatic and asymptomatic groups. Logistic regression was performed to identify the factors associated with symptomatic carotid plaque and to develop a scale. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the scale.Results: A total of 90 carotid plaques from 90 patients were included (symptomatic 35.6%, asymptomatic 64.4%). Three main factors were found to be associated with symptomatic carotid plaque: high-density lipoprotein cholesterol (HDL-C) <0.925 mmol/L (OR, 4.708; 95% CI, 1.640 to 13.517; P = 0.004), irregular plaque (OR, 4.017; 95% CI, 1.250 to 12.910; P = 0.020), and white thrombus (OR, 4.594; 95% CI, 1.141 to 18.487; P = 0.032). The corresponding score of three items produced a scale with good discrimination (AUC, 0.768; 95% CI, 0.665 to 0.871). The optimal cutoff value of the scale was 1.5 points with 59.4% sensitivity and 84.5% specificity.Conclusion: The three-item scale comprising HDL-C <0.925 mmol/L, angiographical irregular plaque, and white thrombus detected by OCT may provide information to identify symptomatic carotid plaque. Further large-scale studies are required to validate whether the symptomatic carotid plaque scale is clinically valuable in recognizing carotid atherosclerosis in the early stages.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
R Vergallo ◽  
I Porto ◽  
A Ricchiuto ◽  
A Buonpane ◽  
F Coletti ◽  
...  

Abstract Background The relation between culprit plaque morphology and the clinical presentation of an acute myocardial infarction (AMI) has not been examined in detail. Purpose To study the culprit plaque morphology in patients with AMI with or without preinfarction angina using optical coherence tomography (OCT) imaging. Methods A total of 102 patients with AMI (32 STEMI, 70 NSTEMI) who underwent OCT imaging before percutaneous coronary intervention were enrolled. Patients were classified as: i) having either intermittent chest pain in the six hours preceding the final episode of pain, or unstable angina (or both) in the week preceding AMI (preinfarction angina group); or ii) having a single episode of chest pain without unstable symptoms in the preceding week (no preinfarction angina group). Culprit plaque was classified as plaque rupture (PR) or intact fibrous cap (IFC), as previously described. Prati thrombus score was calculated, and the prevalence of calcification, neovascularization, and OCT-defined macrophage accumulation was assessed. Results Patients with preinfarction angina showed a significantly higher prevalence of IFC than PR, while those without preinfarction angina showed a significantly higher prevalence of PR than IFC (Figure). PR in patients with preinfarction angina were more frequently associated with macrophage accumulation, while those in patients without preinfarction angina were not (Figure). White thrombus tended to be more frequent in patients with preinfarction angina than in those without (85.7% vs. 63.6%, p=0.097), and Prati thrombus score tended to be lower [22.0 (15.8–30.3) vs. 38.5 (12.8–67.5), p=0.145]. Calcifications were significantly less frequent in patients with preinfarction angina than in those without (22.0% vs. 40.4%, p=0.045), while neovascularization tended to be more frequent (58.0% vs. 42.3%, p=0.113). Conclusions Patients with preinfarction angina have a distinct culprit plaque phenotype, frequently characterized by IFC and a relatively lower thrombotic burden, probably reflecting a prevalence of reparative mechanisms and spontaneous thrombolytic activity in these patients.


2020 ◽  
pp. bjophthalmol-2020-317825
Author(s):  
Yonghao Li ◽  
Weibo Feng ◽  
Xiujuan Zhao ◽  
Bingqian Liu ◽  
Yan Zhang ◽  
...  

Background/aimsTo apply deep learning technology to develop an artificial intelligence (AI) system that can identify vision-threatening conditions in high myopia patients based on optical coherence tomography (OCT) macular images.MethodsIn this cross-sectional, prospective study, a total of 5505 qualified OCT macular images obtained from 1048 high myopia patients admitted to Zhongshan Ophthalmic Centre (ZOC) from 2012 to 2017 were selected for the development of the AI system. The independent test dataset included 412 images obtained from 91 high myopia patients recruited at ZOC from January 2019 to May 2019. We adopted the InceptionResnetV2 architecture to train four independent convolutional neural network (CNN) models to identify the following four vision-threatening conditions in high myopia: retinoschisis, macular hole, retinal detachment and pathological myopic choroidal neovascularisation. Focal Loss was used to address class imbalance, and optimal operating thresholds were determined according to the Youden Index.ResultsIn the independent test dataset, the areas under the receiver operating characteristic curves were high for all conditions (0.961 to 0.999). Our AI system achieved sensitivities equal to or even better than those of retina specialists as well as high specificities (greater than 90%). Moreover, our AI system provided a transparent and interpretable diagnosis with heatmaps.ConclusionsWe used OCT macular images for the development of CNN models to identify vision-threatening conditions in high myopia patients. Our models achieved reliable sensitivities and high specificities, comparable to those of retina specialists and may be applied for large-scale high myopia screening and patient follow-up.


Author(s):  
Rajgopal Mani ◽  
Jon Holmes ◽  
Kittipan Rerkasem ◽  
Nikolaos Papanas

Dynamic optical coherence tomography (D-OCT) is a relatively new technique that may be used to study the substructures in the retina, in the skin and its microcirculation. Furthermore, D-OCT is a validated method of imaging blood flow in skin microcirculation. The skin around venous and mixed arterio-venous ulcers was imaged and found to have tortuous vessels assumed to be angiogenic sprouts, and classified as dots, blobs, coils, clumps, lines, and curves. When these images were analyzed and measurements of vessel density were made, it was observed that the prevalence of coils and clumps in wound borders was significantly greater compared with those at wound centers. This reinforced the belief of inward growth of vessels from wound edge toward wound center which, in turn, reposed confidence in following the wound edge to study healing. D-OCT imaging permits the structure and the function of the microcirculation to be imaged, and vessel density measured. This offers a new vista of skin microcirculation and using it, to better understand angiogenesis in chronic wounds.


2021 ◽  
pp. 247412642199733
Author(s):  
Kyle D. Kovacs ◽  
M. Abdallah Mahrous ◽  
Luis Gonzalez ◽  
Benjamin E. Botsford ◽  
Tamara L. Lenis ◽  
...  

Purpose: This work aims to evaluate the clinical utility and feasibility of a novel scanning laser ophthalmoscope-based navigated ultra-widefield swept-source optical coherence tomography (UWF SS-OCT) imaging system. Methods: A retrospective, single-center, consecutive case series evaluated patients between September 2019 and October 2020 with UWF SS-OCT (modified Optos P200TxE, Optos PLC) as part of routine retinal care. The logistics of image acquisition, interpretability of images captured, nature of the peripheral abnormality, and clinical utility in management decisions were recorded. Results: Eighty-two eyes from 72 patients were included. Patients were aged 59.4 ± 17.1 years (range, 8-87 years). During imaging, 4.4 series of images were obtained in 4.1 minutes, with 86.4% of the image series deemed to be diagnostic of the peripheral pathology on blinded image review. The most common pathologic findings were chorioretinal scars (18 eyes). In 31 (38%) eyes, these images were meaningful in supporting clinical decision-making with definitive findings. Diagnoses imaged included retinal detachment combined with retinoschisis, retinal hole with overlying vitreous traction and subretinal fluid, vitreous inflammation overlying a peripheral scar, Coats disease, and peripheral retinal traction in sickle cell retinopathy. Conclusions: Navigated UWF SS-OCT imaging was clinically practical and provided high-quality characterization of peripheral retinal lesions for all eyes. Images directly contributed to management plans, including laser, injection or surgical treatment, for a clinically meaningful set of patients (38%). Future studies are needed to further assess the value of this imaging modality and its role in diagnosing, monitoring, and treating peripheral lesions.


2020 ◽  
pp. 1-9
Author(s):  
Sabrina Bergeron ◽  
Bryan Arthurs ◽  
Debra-Meghan Sanft ◽  
Christina Mastromonaco ◽  
Miguel N. Burnier Jr.

<b><i>Introduction:</i></b> Optical coherence tomography (OCT) imaging has been used as a diagnostic tool for retinal disease for several years, and OCT apparatuses are becoming increasingly powerful. However, OCT has yet to reach its full potential in ophthalmology clinics. Alike retinal layers, it has been shown that OCT is able to generate cross-sectional images of the skin and allows visualization of skin lesions in a histopathology-like manner. <b><i>Objective:</i></b> We aim to validate OCT as an imaging modality for peri-ocular skin cancer. Through a series of cases, we highlight findings for 3 common eyelid malignancies: basal cell carcinoma, squamous cell carcinoma and sebaceous carcinoma. We propose an OCT image-based signature for basal cell carcinoma. <b><i>Methods:</i></b> This is a prospective study. Fifty-eight lesions suspicious of malignancy from 57 patients were subjected to OCT imaging prior to the surgical excision of the lesion. OCT images were analysed and scored according to previously identified OCT features. Eight representative examples are presented, highlighting the OCT patterns for each malignancy side by side to its corresponding histopathological sections. <b><i>Results:</i></b> Out of the 58 lesions analysed, 53 were malignant. A loss of the dermal-epidermal junction is observed in all malignant lesions. A strong link is observed between the presence of subepithelial hyporeflective nests on OCT and the diagnosis of basal cell carcinoma (present in 83% of cases). Conversely, lesions of epithelial origin such as squamous cell carcinoma are most often represented on OCT by acanthosis. Two supplementary cases, one basal cell carcinoma and one sebaceous carcinoma, are provided to illustrate how OCT imaging is a valuable tool in cases where clinical observations may be unusual. <b><i>Conclusions:</i></b> We provide evidence supporting the use of OCT for the evaluation of peri-ocular cancers. OCT enables visualization of the skin layers in vivo, before biopsy. Our results show that certain OCT features can contribute to include or exclude a diagnosis of basal cell carcinoma. By integrating this non-invasive imaging methodology into the routine assessment of peri-ocular skin lesions, especially in health care centres where access to specialists is limited, OCT imaging can increase clinical precision, reduce delays in patient referral and enhance patient care.


2021 ◽  
pp. 159101992110034
Author(s):  
Andre Monteiro ◽  
Demetrius K Lopes ◽  
Amin Aghaebrahim ◽  
Ricardo Hanel

Purpose Flow-diverters have revolutionized the endovascular treatment of intracranial aneurysms, offering a durable solution to aneurysms with high recurrence rates after conventional stent-assisted coiling. Events that occur after treatment with flow-diversion, such as in-stent stenosis (ISS) are not well understood and require further assessment. After assessing an animal model with Optical Coherence Tomography (OCT), we propose a concept that could explain the mechanism causing reversible ISS after treatment of intracranial aneurysms with flow-diverters. Methods Six Pipeline Flex embolization devices (PED-Flex), six PED with Shield technology (PED-Shield), and four Solitaire AB devices were implanted in the carotid arteries (two stents per vessel) of four pigs. Intravascular optical coherence tomography (OCT) and digital subtraction angiography (DSA) images obtained on day 21 were compared to histological specimens. Results A case of ISS in a PED-Flex device was assessed with OCT imaging. Neointima with asymmetrical topography completely covering the PED struts was observed. Histological preparations of the stenotic area demonstrated thrombus on the surface of device struts, covered by neointima. Conclusion This study provides a plausible concept for reversible ISS in flow-diverters. Based on an observation of a previous experiment, we propose that similar cases of ISS are related to thrombus presence underneath endothelization, but further experiments focused on this phenomenon are needed. Optical Coherence Tomography will be useful tool when available for clinical use.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yi Sun ◽  
Jianfeng Wang ◽  
Jindou Shi ◽  
Stephen A. Boppart

AbstractPolarization-sensitive optical coherence tomography (PS-OCT) is a high-resolution label-free optical biomedical imaging modality that is sensitive to the microstructural architecture in tissue that gives rise to form birefringence, such as collagen or muscle fibers. To enable polarization sensitivity in an OCT system, however, requires additional hardware and complexity. We developed a deep-learning method to synthesize PS-OCT images by training a generative adversarial network (GAN) on OCT intensity and PS-OCT images. The synthesis accuracy was first evaluated by the structural similarity index (SSIM) between the synthetic and real PS-OCT images. Furthermore, the effectiveness of the computational PS-OCT images was validated by separately training two image classifiers using the real and synthetic PS-OCT images for cancer/normal classification. The similar classification results of the two trained classifiers demonstrate that the predicted PS-OCT images can be potentially used interchangeably in cancer diagnosis applications. In addition, we applied the trained GAN models on OCT images collected from a separate OCT imaging system, and the synthetic PS-OCT images correlate well with the real PS-OCT image collected from the same sample sites using the PS-OCT imaging system. This computational PS-OCT imaging method has the potential to reduce the cost, complexity, and need for hardware-based PS-OCT imaging systems.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R Bhoite ◽  
H Jinnouchi ◽  
F Otsuka ◽  
Y Sato ◽  
A Sakamoto ◽  
...  

Abstract Background In many studies, struts coverage is defined as &gt;0 mm of tissue overlying the stent struts by optical coherence tomography (OCT). However, this definition has never been validated using histology as the “gold standard”. The present study sought to assess the appropriate cut-off value of neointimal thickness of stent strut coverage by OCT using histology. Methods OCT imaging was performed on 39 human coronary arteries with stents from 25 patients at autopsy. A total of 165 cross-sectional images from 46 stents were co-registered with histology. The optimal cut-off value of strut coverage by OCT was determined. Strut coverage by histology was defined as endothelial cells with at least underlying two layers of smooth muscle cells. Considering the resolution of OCT is 10–20 μm, 3 different cut-off values (i.e. at ≥20, ≥40, and ≥60 μm) were assessed. Results A total of 2235 struts were evaluated by histology. Eventually, 1216 struts which were well-matched struts were analyzed in this study. By histology, uncovered struts were observed in 160 struts and covered struts were observed in 1056 struts. The broadly used definition of OCT-coverage which does not consider neointimal thickness yielded a poor specificity of 37.5% and high sensitivity 100%. Of 3 cut-off values, the cut-off value of &gt;40 μm was more accurate as compared to &gt;20 and &gt;60 mm [sensitivity (99.3%), specificity (91.0%), positive predictive value (98.6%), and negative predictive value (95.6%)] Conclusion The most accurate cut-off value was ≥40 μm neointimal thickness by OCT in order to identify stent strut coverage validated by histology. Funding Acknowledgement Type of funding source: None


2012 ◽  
Vol 154 (3) ◽  
pp. 287-292 ◽  
Author(s):  
Konstantina P. Bouki ◽  
Mihail G. Katsafados ◽  
Dionissios N. Chatzopoulos ◽  
Stavroula N. Psychari ◽  
Konstantinos P. Toutouzas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document