scholarly journals Effect of Enzymatic Hydrolysis on the Zinc Binding Capacity and in vitro Gastrointestinal Stability of Peptides Derived From Pumpkin (Cucurbita pepo L.) Seeds

2021 ◽  
Vol 8 ◽  
Author(s):  
Dan Lu ◽  
Mengyao Peng ◽  
Min Yu ◽  
Bo Jiang ◽  
Hong Wu ◽  
...  

Zinc is a crucial micronutrient for maintaining body immune system and metabolism function. However, insufficient intake from diet may lead to zinc deficiency and impair normal body function. In addition, conventional zinc salts supplementation has the disadvantage of low bioavailability since the zinc ions may be easily chelated by dietary fiber or phytate commonly found in diets rich in plants, and form precipitates that cannot be absorbed. Therefore, the objective of the present study is to prepare pumpkin seed derived peptides and to evaluate the effect of structure and surface properties on the zinc binding behavior of the pumpkin seed protein hydrolysate (PSPH), as well as their gastrointestinal stability. Briefly, different PSPHs were prepared using enzymatic hydrolysis method with bromelain, papain, flavourzyme, alcalase, and pepsin. The particle size, zeta potential, surface hydrophobicity, degree of hydrolysis, ATR-FTIR spectra, and zinc binding capacity were determined. The representative samples were chosen to characterize the binding energy and surface morphology of PSPH-Zn. At last, the in vitro gastrointestinal stability of PSPH and PSPH-Zn were evaluated. Our results showed that peptides hydrolyzed by papain had the largest average molecular weight, smallest particle size, highest hydrophobicity, and the greatest zinc binding capacity. Zinc showed better gastrointestinal stability in PSPHs chelates than in its salt. Meanwhile, PSPH-Zn with higher zinc binding capacity showed better stability. The result of this study indicated pumpkin seed hydrolyzed by papain may be used as a potential source for zinc fortification. The findings in this study may provide important implications for developing plant-based zinc chelating peptides.

Food Research ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 1245-1253
Author(s):  
R.M. Chew ◽  
Z. Mohd Zin ◽  
A. Ahmad ◽  
N.F. Mohtar ◽  
N.D. Rusli ◽  
...  

Deep-fried food is a fast and convenient way to prepare food that imparts desirable sensory characteristics of colour, flavour and in particular, a smooth texture, yet has been labelled as not healthy by consumers. Incorporation of other ingredients in the formulation of the batter could reduce the fat absorption in deep-fried foods. This research was aimed to determine the physicochemical and sensory properties of Brownstripe red snapper protein hydrolysate (BRSPH) and its utilisation in reducing the oil intake of deep-fried foods. The BRSPH were extracted using the enzymatic method utilizing Alcalase® as the working enzyme. Batter formulations were prepared by adding 0%, 2%, 4%, 6% and 8% of BRSPH into the sample mixtures. Addition of BRSPH into the batter was found to increase hardness and crispness of deep-fat fried battered squids. The fat content of the deep-fat fried battered squids with 8% BRSPH powder was found to be the lowest compared to those added with 2%, 4% and 6%, while sample without BRSPH powder was the highest (30.15%). Deep-fat fried squids with 4% of BRSPH powder showed the best acceptability scores in terms of crispness, taste and overall acceptability, but no significant differences were determined in the crispness between deep-fat fried squids with and without BRSPH. The findings indicate that enzymatic hydrolysis using Alcalase® has the potential to yield BRSPH with a high degree of hydrolysis (98.19%), low molecular weight (10-15 kDa), and low oil binding capacity (2.38 g oil/ g protein). Enzymatic hydrolysis proved to be a viable technique to produce protein hydrolysate which able to reduce the oil uptake and healthier with high acceptability of the end products. Research on how to optimize the use of BRSPH with a high economic, nutritional and industrial potential of understated resources would allow for the implementation of manufacturing practices to enhance the use of resources and increase the value of the by-product. This approach will offer the potential use of BRSPH for the production of batter formulation which is efficient in the reduction of oil uptake


2018 ◽  
Vol 5 (2) ◽  
pp. 171216 ◽  
Author(s):  
Shukun Wang ◽  
Danyang Meng ◽  
Sisi Wang ◽  
Zhong Zhang ◽  
Ruijin Yang ◽  
...  

In this study, enzymatic hydrolysis and cationization with epoxypropyldodecyldimethylammonium chloride of wheat protein, an economic protein complex containing great amount of disulfide bonds, were conducted to improve properties such as solubility and disassociation behaviour for recovery of damaged hair when used in shampoo. The optimal conditions for enzymatic hydrolysis were pH 8.2, 55°C with Alcalase for 60 min. After the selected hydrolysis, the degree of hydrolysis, nitrogen solubility index, foaming capacity index, foam stability index, emulsifying activity index and emulsion stability index of hydrolysate with 58.71% of short-chain peptides (less than 1000 Da) were 8.81%, 39.07%, 225%, 56.67%, 9.62 m 2  g −1 and 49.08, respectively. The cationization was followed to raise the isoelectric point of wheat protein hydrolysate from 7.0 to 10.0, which could facilitate the quaternized protein hydrolysate to adhere to the surface of hair at the range of pH 5–6 of hair care products to form more disulfide bonds. The results show that a shampoo with quaternized wheat proteins hydrolysate possesses excellent properties in recovering damaged hair, making the surface of hair smooth and compact.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 381 ◽  
Author(s):  
Giulia Leni ◽  
Lise Soetemans ◽  
Augusta Caligiani ◽  
Stefano Sforza ◽  
Leen Bastiaens

Protein hydrolysates from lesser mealworm (Alphitobius diaperinus, LM) were obtained by enzymatic hydrolysis with protease from Bacillus licheniformis. A preliminary test performed for five hours of hydrolysis generated an insect protein hydrolysate with 15% of degree of hydrolysis (DH), optimum solubility property and oil holding capacity, but emulsifying and foaming ability were completely impaired. In order to investigate the potential implication of DH on techno-functional properties, a set of protein hydrolysates with a different DH was obtained by sub-sampling at different time points during three hours of enzymatic hydrolysis process. An increase in DH% had positive effects on the solubility property and oil holding ability, while a reduced emulsifying ability was observed up to five hours of hydrolysis. These results demonstrated that the enzymatic hydrolysis, if performed under controlled conditions and not for a long period, represents a valid method to extract high quality protein from insects with tailored techno-functionality, in order to produce tailored ingredients for feed and food purpose.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 833
Author(s):  
Xiaogang Zhang ◽  
Parinya Noisa ◽  
Jirawat Yongsawatdigul

Production of protein hydrolysate as nutraceuticals is typically based on the activity of the hydrolysate, which might not yield the optimal activity under physiological condition due to structural modification of peptides upon gastrointestinal (GI) digestion. This study systematically compared the chemical and cellular antioxidant activities of the in vitro digesta of tilapia protein and its hydrolysates prepared with various degree of hydrolysis (DH) by Alcalase. The enzymes used in the in vitro GI digestion analysis significantly contributed to the peptide content, Trolox equivalent antioxidant capacity (TEAC), and oxygen radical absorbance capacity (ORAC). Proteins and all hydrolysates were slightly digested by pepsin but hydrolyzed extensively by pancreatin. Both hydrolysate and digesta predominantly scavenged free radicals via hydrogen atom transfer (HAT). The antioxidant activities of the hydrolysates increased with the increasing DH up to 16 h of hydrolysis. However, the digesta of 10-h hydrolysate displayed the highest chemical and HepG2 cellular antioxidant activities, while the protein digesta displayed the lowest. Principal component analysis (PCA) showed that the TEAC of the digesta was positively correlated with the cellular antioxidant activity (CAA). Therefore, the production of protein hydrolysate should be optimized based on the activity of the hydrolysate digesta rather than that of hydrolysates.


2015 ◽  
Vol 82 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Shun-Li Huang ◽  
Li-Na Zhao ◽  
Xixi Cai ◽  
Shao-Yun Wang ◽  
Yi-Fan Huang ◽  
...  

The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-binding peptides can form complexes with calcium to improve its absorption and bioavailability. The aim of this study was focused on isolation and characterisation of a calcium-binding peptide from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex with substrate to enzyme ratio of 25 : 1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was isolated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204 Da with strong calcium binding ability was identified on chromatography/electrospray ionisation (LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of glutamic acid. In addition, the amino group and peptide amino are also the related groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percentage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointestinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-binding ingredient in dietary supplements.


2021 ◽  
Vol 03 (04) ◽  
pp. 1-1
Author(s):  
Michelle Szucs ◽  
◽  
Miguel Angulo ◽  
Carlos Costa ◽  
Mª Carmen Márquez ◽  
...  

Five different commercial proteases (Alcalase 2.4L, Flavourzyme 1000L, Neutrase, Protamex, and PTN) were evaluated for the simultaneous recovery of protein and lipids through hydrolysis. The hydrolysis reaction was monitored using the pH-stat procedure, in which samples were collected after 240 min of hydrolysis using each enzyme. The samples were analyzed for the degree of hydrolysis, protein hydrolysate, collagen, lipids, and fatty acids. A clear relationship was observed between the degree of hydrolysis and the amounts of recovered products. Serine endopeptidases from the microbial source (Alcalase) resulted in the maximum degree of hydrolysis (27.5%), lipid recovery (82.6%), and protein hydrolysates quality (average molecular weight of the hydrolysates = 472 Dalton), followed by formulations of serine protease and metalloprotease from the microbial source (Protamex). Metalloproteases from the microbial source (Neutrase) resulted in maximum collagen recovery (87.1%). Serine endopeptidases from the animal source (PTN) and endo/exopeptidases from the fungal source (Flavourzyme) exhibited an intermediate efficacy between Alcalase and Neutrase. In the case of all proteases, the product fatty acid profile matched well with that of the meat waste, which suggests that no chemical changes occurred in the lipids after the hydrolysis with the evaluated proteases. These results suggest that hydrolysis using proteases could serve as an ecofriendly and viable alternative for obtaining additional value from meat waste.


Food Research ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 805-813
Author(s):  
M.K. Zainol ◽  
R.C. Tan ◽  
Z. Mohd Zin ◽  
M. Danish-Daniel ◽  
Amirrudin Ahmad

Toothpony (Gazza minuta) is not typically used for human consumption due to its small size and low meat content, which is widely used as a fish meal. It is stated to be high in protein content and may be suitable for fish protein hydrolysate (FPH) production. Deepfat fried foods contain significant amounts of fat, in some cases up to one-third of the total food weight after frying. Toothpony FPH with low oil-binding ability may reduce the amount of oil consumed by deep-fried products. The objective of this research was to measure the physicochemical properties of Toothpony FPH and its utilisation in reducing the oil intake of deep-fried food. Toothpony FPH was obtained using the enzymatic method successfully. Batter formulations are prepared by adding 0%, 2%, 4%, 6% and 8% of Toothpony FPH into the sample mixtures. The present study indicates the degree of hydrolysis of Toothpony FPH determined by trichloroacetic acid (TCA) method was found to be 98.02%. Toothpony FPH's molecular weight distributions ranged from 7 to 175kDa and FTIR's transmission spectrum indicated the presence of amide I and amide II compounds (1654 and 1535cm-1 ). Oil binding capacity of Toothpony FPH was found to be low, which was 1.9 g oil/ g protein. This study indicated that 4% of Toothpony FPH produced the optimum amount to be incorporated in batter in order to best reduce oil uptake. In sensory evaluation, deep-fat-fried squid incorporated with 8% of Toothpony FPH showed the highest acceptance in all attributes, which were colour, crispness, oiliness, taste and overall acceptability. This approach offers the potentials use of Toothpony fish FPH for the production batter formulation which is efficient in the reduction of oil uptake.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tiantian Lin ◽  
Cristina Fernandez-Fraguas

Abstract Objectives Epidemiological evidence suggests that common beans are hypolipidemic agents and therefore able to alleviate obesity and cardiovascular disease. The observed positive effect of bean consumption on blood lipid levels is mainly attributed to their high content of dietary fiber (DF) and it is linked to the ability of DF to interfere with lipid digestion in different ways. Some proposed mechanisms are related to the physicochemical properties of DF and involve binding of bile acids (BA) which could decrease the rate of lipid digestion and absorption in the duodenum. This study aimed to investigate the effect of bean matrices varying in structure, content and distribution of DF fractions on lipid digestion kinetics in vitro. Methods Structurally different bean matrices obtained by several processing techniques (i.e., hydrothermal, high pressure and mechanical treatments) as well isolated DF fractions were investigated. b-glucan was used as comparison. The viscosity, particle size and water and oil-binding ability of bean matrices were determined. We used dialysis, under duodenal conditions and HPLC analysis to determine BA-binding capacity. A standardized multistage static in vitro digestion protocol was used to assess the effect of bean matrices on the lipolysis rate of extrinsic lipids. Results Beans matrices reduced the extent and rate of digestion of corn oil compared to blank, with the water-soluble DF showing the largest reduction. Hydrothermal-treated beans and bean matrices with larger particle size showed the lowest capacity to retain BA and consequently were less effective at reducing the extent of lipolysis. The lower lipolysis rate observed in specific samples was related to their higher BA-binding. Conclusions Different processing variables generated bean microstructures with different potential to modulate lipid digestion. Overall, processing decreased the ability of bean matrices to delay lipolysis. Isolated bean DF has the potential to control lipolysis depending on DF distribution and BA-binding ability. However, none of the bean matrices reached the levels observed with b-glucan. Funding Sources US Dry Bean Council and Hatch Program (NIFA), USDA.


Sign in / Sign up

Export Citation Format

Share Document