scholarly journals Structurally Different Dry Bean Matrices Modulate in Vitro Lipid Digestion (FS14-08-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tiantian Lin ◽  
Cristina Fernandez-Fraguas

Abstract Objectives Epidemiological evidence suggests that common beans are hypolipidemic agents and therefore able to alleviate obesity and cardiovascular disease. The observed positive effect of bean consumption on blood lipid levels is mainly attributed to their high content of dietary fiber (DF) and it is linked to the ability of DF to interfere with lipid digestion in different ways. Some proposed mechanisms are related to the physicochemical properties of DF and involve binding of bile acids (BA) which could decrease the rate of lipid digestion and absorption in the duodenum. This study aimed to investigate the effect of bean matrices varying in structure, content and distribution of DF fractions on lipid digestion kinetics in vitro. Methods Structurally different bean matrices obtained by several processing techniques (i.e., hydrothermal, high pressure and mechanical treatments) as well isolated DF fractions were investigated. b-glucan was used as comparison. The viscosity, particle size and water and oil-binding ability of bean matrices were determined. We used dialysis, under duodenal conditions and HPLC analysis to determine BA-binding capacity. A standardized multistage static in vitro digestion protocol was used to assess the effect of bean matrices on the lipolysis rate of extrinsic lipids. Results Beans matrices reduced the extent and rate of digestion of corn oil compared to blank, with the water-soluble DF showing the largest reduction. Hydrothermal-treated beans and bean matrices with larger particle size showed the lowest capacity to retain BA and consequently were less effective at reducing the extent of lipolysis. The lower lipolysis rate observed in specific samples was related to their higher BA-binding. Conclusions Different processing variables generated bean microstructures with different potential to modulate lipid digestion. Overall, processing decreased the ability of bean matrices to delay lipolysis. Isolated bean DF has the potential to control lipolysis depending on DF distribution and BA-binding ability. However, none of the bean matrices reached the levels observed with b-glucan. Funding Sources US Dry Bean Council and Hatch Program (NIFA), USDA.

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


Author(s):  
Sejal Patel ◽  
Anita P. Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. After oral administration to get maximum therapeutic effect, major challenge is their water solubility. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is poorly water soluble antihypertensive drug has lower bioavailability. To improve bioavailability of Benidipine HCL, BND nanosuspension was formulated using media milling technique. HPMC E5 was used to stabilize nanosuspension. The effect of different important process parameters e.g. selection of polymer concentration X1(1.25 mg), stirring time X2 (800 rpm), selection of zirconium beads size X3 (0.4mm) were investigated by 23 factorial design to accomplish desired particle size and saturation solubility. The optimized batch had 408 nm particle size Y1, and showed in-vitro dissolution Y2 95±0.26 % in 30 mins and Zeta potential was -19.6. Differential scanning calorimetry (DSC) and FT-IR analysis was done to confirm there was no interaction between drug and polymer.


Author(s):  
Leena Jacob ◽  
Abhilash Tv ◽  
Shajan Abraham

Objective: The study was carried out with an objective to achieve a potential sustained release oral drug delivery system of an antihypertensive drug, Perindopril which is a ACE inhibitor having half life of 2 hours. Perindopril is water soluble drug, so we can control or delay the release rate of drug by using release retarding polymers. This may also decrease the toxic side effects by preventing the high initial concentration in the blood.Method: Microcapsules were prepared by solvent evaporation technique using Eudragit L100 and Ethyl cellulose as a retarding agent to control the release rate and magnesium stearate as an inert dispersing carrier to decrease the interfacial tension between lipophilic and hydrophilic phase. Results: Prepared microcapsules were evaluated for the particle size, percentage yield, drug entrapment efficiency, flow property and in vitro drug release for 12 h. Results indicated that the percentage yield, mean particle size, drug entrapment efficiency and the micrometric properties of the microcapsules was influenced by various drug: polymer ratio. The release rate of microcapsules could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents.Conclusion:Perindopril microcapsules can be successfully designed to develop sustained drug delivery, that reduces the dosing frequency and their by one can increase the patient compliance.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ao Li ◽  
Aixia Zhu ◽  
Di Kong ◽  
Chunwei Wang ◽  
Shiping Liu ◽  
...  

For improving solubility and bioaccessibility of phytosterols (PS), phytosterol nanoparticles (PNPs) were prepared by emulsification–evaporation combined high-pressure homogenization method. The organic phase was formed with the dissolved PS and soybean lecithin (SL) in anhydrous ethanol, then mixed with soy protein isolate (SPI) solution, and homogenized into nanoparticles, followed by the evaporation of ethanol. The optimum fabrication conditions were determined as PS (1%, w/v): SL of 1:4, SPI content of 0.75% (w/v), and ethanol volume of 16 ml. PNPs were characterized to have average particle size 93.35 nm, polydispersity index (PDI) 0.179, zeta potential −29.3 mV, and encapsulation efficiency (EE) 97.3%. The impact of temperature, pH, and ionic strength on the stability of fabricated PNPs was determined. After 3-h in vitro digestion, the bioaccessibility of PS in nanoparticles reached 70.8%, significantly higher than the 18.2% of raw PS. Upon freeze-drying, the particle size of PNPs increased to 199.1 nm, resulting in a bimodal distribution. The solubility of PS in water could reach up to 2.122 mg/ml, ~155 times higher than that of raw PS. Therefore, this study contributes to the development of functional PS-food ingredients.


2021 ◽  
Vol 15 (5) ◽  
pp. 8-12
Author(s):  
Kajal Tomer ◽  
Dilip Kumar Gupta

The drug can be released in a controlled manner using a gastro retentive dosage type. The main focus on the novel technological advances in the floating drug delivery method for gastric retention. The preparation of diacerein micro balloon is done by solvent diffusion method, using acrylic polymer like Eudragit S 100 and HPMC K4 M. The various evaluation of the prepared floating microsphere like its % yield, drug entrapment efficiency, particle size in-vitro dissolution, buoyancy, was studied. The floating microsphere was found to be spherical and range from 85 μm - 192 μm. Whereas the buoyancy in gastric mucosa between the range 30.5% -49.5%. The % yield and % entrapment efficiency were found under the range 61% - 82% and 45.1–84.1% respectively. The microsphere showed favorable in-vitro dissolution 76.8 to 94.45. The optimized formulation was found based on evaluation of floating micro-balloons, Formulation (M3E3) showed the best result as particle size 192 μm, DDE 84.1%, in vitro drug release 94.5%, and in vitro buoyancy 49.5%. all the formulations showed controlled release up to 24 hours.


Author(s):  
Ahmed H. Ali ◽  
Shaimaa N. Abd-Alhammid

       Atorvastatin have problem of very slightly aqueous solubility (0.1-1 mg/ml). Nano-suspension is used to enhance it’s of solubility and dissolution profile. The aim of this study is to formulate Atorvastatin as a nano-suspension to enhance its solubility due to increased surface area of exposed for dissolution medium, according to Noyes-Whitney equation.         Thirty one formulae were prepared to evaluate the effect of ; Type of polymer, polymer: drug ratio, speed of homogenization, temperature of preparation and inclusion of co-stabilizer in addition to the primary one; using solvent-anti-solvent precipitation method under high power of ultra-sonication. In this study five types of stabilizers (TPGS, PVP K30, HPMC E5, HPMC E15, and Tween80) were used in three different concentrations 1:1, 1:0.75 and 1:0.5 for preparing of formulations. At the same time, tween80 and sodium lauryl sulphate have been added as a co-stabilizer.          Atorvastatin nano-suspensions were evaluated for particle size, PDI, zeta potential, crystal form and surface morphology. Finally, results of particle size analysis revealed reduced nano-particulate size to 81nm for optimized formula F18 with the enhancement of in-vitro dissolution profile up to 90% compared to 44% percentage cumulative release for the reference Atorvastatin calcium powder in 6.8 phosphate buffer media. Furthermore, saturation solubility of freeze dried Nano suspension showed 3.3, 3.8, and 3.7 folds increments in distilled water, 0.1N Hcl and 6.8 phosphate buffers, respectively. Later, freeze dried powder formulated as hard gelatin capsules and evaluated according to the USP specifications of the drug content and the disintegration time.        As a conclusion; formulation of poorly water soluble Atorvastatin calcium as nano suspension significantly improved the dissolution of the drug and enhances its solubility.


2017 ◽  
Vol 8 (4) ◽  
pp. 1547-1557 ◽  
Author(s):  
Jennifer Borreani ◽  
María Espert ◽  
Ana Salvador ◽  
Teresa Sanz ◽  
Amparo Quiles ◽  
...  

Cellulose ether emulsions have good physical and oxidative stability and can delay in vitro lipid digestion. HMC emulsions inhibit lipolysis more than others and could enhance gastric fullness and satiety.


2019 ◽  
Vol 10 (8) ◽  
pp. 5174-5187 ◽  
Author(s):  
Clay Swackhamer ◽  
Zhichao Zhang ◽  
Ameer Y. Taha ◽  
Gail M. Bornhorst

In vitro gastric digestion of almond particles using a model with simulated peristaltic contractions resulted in particle size reduction and higher fatty acid bioaccessibility than in vitro digestion using a model that lacked peristaltic contractions.


2019 ◽  
Vol 16 (6) ◽  
pp. 500-510
Author(s):  
Rong Chai ◽  
Hailing Gao ◽  
Zhihui Ma ◽  
Meng Guo ◽  
Qiang Fu ◽  
...  

Background: Olmesartan medoxomil (OLM) is a promising prodrug hydrolyzed to olmesartan (OL) during absorption from the gastrointestinal tract. OL is a selective angiotensin II receptor antagonist, with high drug resistance and low drug interaction. However, OLM has low solubility and low bioavailability. Therefore, it is extremely urgent to reduce the drug particle size to improve its biological bioavailability. Objective: The aim of the study was to improve the oral bioavailability of poorly water-soluble olmesartan medoxomil (OLM) by using different particle size-reduction strategies. Method: Raw drug material was micronized or nanosized by either jet or wet milling processes, respectively. The particle sizes of the prepared nanocrystals (100-300 nm) and microcrystals (0.5-16 μm) were characterized by DLS, SEM, and TEM techniques. Solid state characterization by XPRD and DSC was used to confirm the crystalline state of OLM after the milling processes. Results: We demonstrated that OLM nanocrystals enhanced solubility and dissolution in the non-sink condition in which high sensitivity was found in purified water. After 1 h, 65.4% of OLM was dissolved from nanocrystals, while microcrystals and OLMETEC® only showed 37.8% and 31.9% of drug dissolution, respectively. In the pharmacokinetic study using Beagle dogs, an increase in Cmax (~2 fold) and AUC (~1.6 fold) was observed after oral administration of OLM nanocrystals when compared to microcrystals and reference tablets, OLMETEC®. In contrast, OLM microcrystals failed to improve the oral bioavailability of the drugs. Conclusion: Particles size reduction to nano-scale by means of nanocrystals technology significantly increased in vitro dissolution rate and in vivo oral bioavailability of OLM.


Sign in / Sign up

Export Citation Format

Share Document