scholarly journals Successful BCMA CAR-T Therapy for Multiple Myeloma With Central Nervous System Involvement Manifesting as Cauda Equina Syndrome—A Wandering Road to Remission

2021 ◽  
Vol 11 ◽  
Author(s):  
Yiyun Wang ◽  
Linqin Wang ◽  
Yifan Zeng ◽  
Ruimin Hong ◽  
Cheng Zu ◽  
...  

Multiple myeloma (MM) with central nervous system (CNS) involvement is rare with only 1% incidence. So far, there is no standard or effective treatment for CNS MM, and the expected survival time is fewer than 6 months. Here, we report a case of MM with CNS involvement presented with cauda equina syndrome (CES) who achieved complete remission after anti-B-cell maturation antigen (BCMA) chimeric antigen receptor T (CAR-T) cell therapy (Chictr.org.cn, ChiCTR1800017404). The expansion of BCMA CAR-T cells was observed in both peripheral blood (PB) and cerebrospinal fluid (CSF). The CAR-T cells peaked at 2.4 × 106/l in CSF at day 8 and 4.1 × 109/l in PB at day 13. The peak concentration of interleukin (IL)-6 in CSF was detected 3 days earlier, and almost five times higher than that in PB. Next, morphological analysis confirmed the elimination of nucleated cells in CSF 1 month after CAR-T cell treatment from 300 cells/μl, and the patient achieved functional recovery with regressed lesion shown in PET-CT. The case demonstrated that BCMA CAR-T cells are effective and safe in this patient population.

Author(s):  
Jia Feng ◽  
Haichan Xu ◽  
Andrew Cinquina ◽  
Zehua Wu ◽  
Qi Chen ◽  
...  

AbstractWhile treatment for B-cell malignancies has been revolutionized through the advent of CAR immunotherapy, similar strategies for T-cell malignancies have been limited. Additionally, T-cell leukemias and lymphomas can commonly metastasize to the CNS, where outcomes are poor and treatment options are associated with severe side effects. Consequently, the development of safer and more effective alternatives for targeting malignant T cells that have invaded the CNS remains clinically important. CD5 CAR has previously been shown to effectively target various T-cell cancers in preclinical studies. As IL-15 strengthens the anti-tumor response, we have modified CD5 CAR to secrete an IL-15/IL-15sushi complex. In a Phase I clinical trial, these CD5-IL15/IL15sushi CAR T cells were tested for safety and efficacy in a patient with refractory T-LBL with CNS infiltration. CD5-IL15/IL15sushi CAR T cells were able to rapidly ablate the CNS lymphoblasts within a few weeks, resulting in the remission of the patient’s lymphoma. Despite the presence of CD5 on normal T cells, the patient only experienced a brief, transient T-cell aplasia. These results suggest that CD5-IL15/IL15sushi CAR T cells may be a safe and useful treatment of T-cell malignancies and may be particularly beneficial for patients with CNS involvement.Graphical Abstract


2019 ◽  
Vol 11 (485) ◽  
pp. eaau7746 ◽  
Author(s):  
Eric L. Smith ◽  
Kim Harrington ◽  
Mette Staehr ◽  
Reed Masakayan ◽  
Jon Jones ◽  
...  

Early clinical results of chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) for multiple myeloma (MM) appear promising, but relapses associated with residual low-to-negative BCMA-expressing MM cells have been reported, necessitating identification of additional targets. The orphan G protein–coupled receptor, class C group 5 member D (GPRC5D), normally expressed only in the hair follicle, was previously identified as expressed by mRNA in marrow aspirates from patients with MM, but confirmation of protein expression remained elusive. Using quantitative immunofluorescence, we determined that GPRC5D protein is expressed on CD138+ MM cells from primary marrow samples with a distribution that was similar to, but independent of, BCMA. Panning a human B cell–derived phage display library identified seven GPRC5D-specific single-chain variable fragments (scFvs). Incorporation of these into multiple CAR formats yielded 42 different constructs, which were screened for antigen-specific and antigen-independent (tonic) signaling using a Nur77-based reporter system. Nur77 reporter screen results were confirmed in vivo using a marrow-tropic MM xenograft in mice. CAR T cells incorporating GPRC5D-targeted scFv clone 109 eradicated MM and enabled long-term survival, including in a BCMA antigen escape model. GPRC5D(109) is specific for GPRC5D and resulted in MM cell line and primary MM cytotoxicity, cytokine release, and in vivo activity comparable to anti-BCMA CAR T cells. Murine and cynomolgus cross-reactive CAR T cells did not cause alopecia or other signs of GPRC5D-mediated toxicity in these species. Thus, GPRC5D(109) CAR T cell therapy shows potential for the treatment of advanced MM irrespective of previous BCMA-targeted therapy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 506-506 ◽  
Author(s):  
Carlos A. Ramos ◽  
Barbara Savoldo ◽  
Enli Liu ◽  
Adrian P. Gee ◽  
Zhuyong Mei ◽  
...  

Abstract Adoptive transfer of T cells with a CD19-specific chimeric antigen receptor (CAR) to treat B-cell malignancies shows remarkable clinical efficacy. However, long-term persistence of T cells targeting CD19, a pan-B cell marker, causes sustained depletion of normal B cells and consequent severe hypogammaglobulinemia. In order to target B-cell malignancies more selectively, we exploited the clonal restriction of mature B-cell malignancies, which express either a κ or a λ-light immunoglobulin (Ig) chain. We generated a CAR specific for κ-light chain (CAR.κ) to selectively target κ+ lymphoma/leukemia cells, while sparing the normal B cells expressing the reciprocal λ-light chain, thus minimizing the impairment of humoral immunity. After preclinical validation, we designed a phase I clinical trial in which patients with refractory/relapsed κ+ non-Hodgkin lymphoma (NHL) or chronic lymphocytic leukemia (CLL) are infused with autologous T cells expressing a CAR.κ that includes a CD28 costimulatory domain. The protocol also included patients with multiple myeloma with the aim of targeting putative myeloma initiating cells. Three dose levels (DL) are being assessed, with escalation determined by a continual reassessment method: 0.2 (DL1), 1 (DL2) and 2 (DL3) ×108 T cells/m2. Repeat infusions are allowed if there is at least stable disease after treatment. End points being evaluated include safety, persistence of CAR+T cells and antitumor activity. T cells were generated for 13 patients by activating autologous PBMC with immobilized OKT3 (n=5) or CD3/CD28 monoclonal antibodies (n=8). In 2 patients with >95% circulating leukemic cells, CD3 positive selection was performed using CliniMACS. After transduction, T cells (1.2×107±0.5×107) were expanded ex vivo for 18±4 days in the presence of interleukin (IL)-2 to reach sufficient numbers for dose escalation. CAR expression was 81%±13% by flow cytometry (74,112±23,000 transgene copy numbers/mg DNA). Products were composed predominantly of CD8+ cells (78%±10%), with a small proportion of naïve (5±4%) and memory T cells (17%±12%). CAR+ T cells specifically targeted κ+ tumors as assessed by 51Cr release assays (specific lysis 79%±10%, 20:1 E:T ratio) but not κ–tumors (11%±7%) or the NK-sensitive cell line K562 (26%±13%). Ten patients have been treated: 2 on DL1, 3 on DL2 and 5 on DL3. Any other treatments were discontinued at least 4 weeks prior to T-cell infusion. Patients with an absolute leukocyte count >500/µL received 12.5 mg/kg cyclophosphamide 4 days before T-cell infusion to induce mild lymphopenia. Infusions were well tolerated, without side effects. Persistence of infused T cells was assessed in blood by CAR.κ-specific Q-PCR assay and peaked 1 to 2 weeks post infusion, remaining detectable for 6 weeks to 9 months. Although the CAR contained a murine single-chain variable fragment (scFv), we did not detect human anti-mouse antibodies following treatment and CAR.κ+T cell expansion continued to be observed even after repeated infusions. We detected modest (<20 fold) elevation of proinflammatory cytokines, including IL-6, at the time of peak expansion of T cells, but systemic inflammatory response syndrome (cytokine storm) was absent. No new-onset hypogammaglobulinemia was observed. All 10 patients are currently evaluable for clinical response. Of the patients with relapsed NHL, 2/5 entered complete remission (after 2 and 3 infusions at dose level 1 and 3, respectively), 1/5 had a partial response and 2 progressed; 3/3 patients with multiple myeloma have had stable disease for 2, 8 and 11 months, associated with up to 38% reduction in their paraprotein; and 2/2 patients with CLL progressed before or shortly after the 6-week evaluation. In conclusion, our data indicate that infusion of CAR.κ+ T cells is safe at every DL and can be effective in patients with κ+ lymphoproliferative disorders. Disclosures: Savoldo: Celgene: Patents & Royalties, Research Funding. Rooney:Celgene: Patents & Royalties, Research Funding. Heslop:Celgene: Patents & Royalties, Research Funding. Brenner:Celgene: Patents & Royalties, Research Funding. Dotti:Celgene: Patents & Royalties, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1921-1921 ◽  
Author(s):  
Henia Dar ◽  
Daniel Henderson ◽  
Zinkal Padalia ◽  
Ashley Porras ◽  
Dakai Mu ◽  
...  

Abstract Autologous CAR-T cells targeting BCMA have induced robust and durable responses in patients with relapsed/refractory multiple myeloma. However, autologous cell therapies face several challenges which will likely limit the number of patients that will have access to these therapies. These limitations include manufacturing failure rates, wait time and supply constraints in addition to other factors such as reimbursement. Allogeneic CAR-T cells can potentially overcome these access challenges, and may have several other advantages over autologous therapies. Allogeneic CAR-T cells are derived from robust healthy donor T cells through a batch manufacturing process, which may result in a highly consistent product with greater potency and enable better safety management. Here we show further development and preclinical data for CTX120, an allogeneic "off the shelf" CAR-T cell targeting BCMA. CTX120 is produced using the CRISPR/Cas9 system to eliminate TCR and MHC class I, coupled with specific insertion of the CAR at the TRAC locus. CTX120 shows consistent and high percent CAR expression from this controlled insertion and exhibits target-specific cytotoxicity and cytokine secretion in response to BCMA positive cell lines. CTX120 CAR-T cells retain their cytotoxic capacity over multiple in vitro re-challenges, demonstrating durable potency and lack of exhaustion. In mouse models of multiple myeloma, CTX120 showed typical CAR-T persistence and eliminated tumors completely, resulting in long-term survival as compared to untreated animals. These data support the ongoing development of CTX120 for treatment of patients with multiple myeloma and further demonstrate the potential for our CRISPR/Cas9 engineered allogeneic CAR-T platform to generate potent CAR-T cells targeting different tumor antigens. Disclosures Dar: CRISPR Therapeutics: Employment, Equity Ownership. Henderson:CRISPR Therapeutics: Employment, Equity Ownership. Padalia:CRISPR Therapeutics: Employment, Equity Ownership. Porras:CRISPR Therapeutics: Employment, Equity Ownership. Mu:CRISPR Therapeutics: Employment, Equity Ownership. Kyungah:CRISPR Therapeutics: Employment, Equity Ownership. Police:CRISPR Therapeutics: Employment, Equity Ownership. Kalaitzidis:CRISPR Therapeutics: Employment, Equity Ownership. Terrett:CRISPR Therapeutics: Employment, Equity Ownership. Sagert:CRISPR Therapeutics: Employment, Equity Ownership.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 740-740 ◽  
Author(s):  
Jesus G. Berdeja ◽  
Yi Lin ◽  
Noopur Raje ◽  
Nikhil Munshi ◽  
David Siegel ◽  
...  

Abstract Introduction: Chimeric antigen receptor (CAR) T cell therapies have demonstrated robust and sustained clinical responses in several hematologic malignancies. Data suggest that achieving acceptable benefit:risk profiles depends on several factors, including the specificity of the antigen target and characteristics of the CAR itself, including on-target, off-tumor activity.To test the safety and efficacy of CAR T cells in relapsed and/or refractory multiple myeloma (RRMM), we have designed a second-generation CAR construct targeting B cell maturation antigen (BCMA) to redirect T cells to MM cells. BCMA is a member of the tumor necrosis factor superfamily that is expressed primarily by malignant myeloma cells, plasma cells, and some mature B cells. bb2121 consists of autologous T cells transduced with a lentiviral vector encoding a novel CAR incorporating an anti-BCMA scFv, a 4-1BB costimulatory motif and a CD3-zeta T cell activation domain. Methods: CRB-401 (NCT02658929) is a multi-center phase 1 dose escalation trial of bb2121 in patients with RRMM who have received ≥ 3 prior regimens, including a proteasome inhibitor and an immunomodulatory agent, or are double-refractory, and have ≥ 50% BCMA expression on malignant cells. Peripheral blood mononuclear cells are collected via leukapheresis and shipped to a central facility for transduction, expansion, and release testing prior to being returned to the site for infusion. Patients undergo lymphodepletion with fludarabine (30 mg/m2) and cyclophosphamide (300 mg/m2) daily for 3 days then receive 1 infusion of bb2121. The study follows a standard 3+3 design with planned dose levels of 50, 150, 450, 800, and 1,200 x 106 CAR+ T cells. The primary outcome measure is incidence of adverse events (AEs), including dose-limiting toxicities (DLTs). Additional outcome measures were quality and duration of clinical response assessed according to the IMWG Uniform Response Criteria for Multiple Myeloma, evaluation of minimal residual disease (MRD), overall and progression-free survival, quantification of bb2121 in blood, and quantification of circulating soluble BCMA over time. Results: Asof May 4, 2017, 21 patients (median 58 [37 to 74] years old) with a median of 5 (1 to 16) years since MM diagnosis, had been infused with bb2121, and 18 patients were evaluable for initial (1-month) clinical response. Patients had a median of 7 prior lines of therapy (range 3 to 14), all with prior autologous stem cell transplant; 67% had high-risk cytogenetics. Fifteen of 21 (71%) had prior exposure to, and 6 of 21 (29%) were refractory to 5 prior therapies (Bort/Len/Car/Pom/Dara). Median follow-up after bb2121 infusion was 15.4 weeks (range 1.4 to 54.4 weeks). As of data cut-off, no DLTs and no treatment-emergent Grade 3 or higher neurotoxicities similar to those reported in other CAR T clinical studies had been observed. Cytokine release syndrome (CRS), primarily Grade 1 or 2, was reported in 15 of 21 (71%) patients: 2 patients had Grade 3 CRS that resolved in 24 hours and 4 patients received tocilizumab, 1 with steroids, to manage CRS. CRS was more common in the higher dose groups but did not appear related to tumor burden. One death on study, due to cardiopulmonary arrest more than 4 months after bb2121 infusion in a patient with an extensive cardiac history, was observed while the patient was in sCR and was assessed as unrelated to bb2121. The overall response rate (ORR) was 89% and increased to 100% for patients treated with doses of 150 x 106 CAR+ T cells or higher. No patients treated with doses of 150 x 106 CAR+ T cells or higher had disease progression, with time since bb2121 between 8 and 54 weeks (Table 1). MRD negative results were obtained in all 4 patients evaluable for analysis. CAR+ T cell expansion has been demonstrated consistently and 3 of 5 patients evaluable for CAR+ cells at 6 months had detectable vector copies. A further 5 months of follow up on reported results and initial data from additional patients will be presented. Conclusions: bb2121 shows promising efficacy at dose levels above 50 x 106 CAR+ T cells, with manageable CRS and no DLTs to date. ORR was 100% at these dose levels with 8 ongoing clinical responses at 6 months and 1 patient demonstrating a sustained response beyond one year. These initial data support the potential of CAR T therapy with bb2121 as a new treatment paradigm in RRMM. CT.gov study NCT02658929, sponsored by bluebird bio and Celgene Disclosures Berdeja: Teva: Research Funding; Janssen: Research Funding; Novartis: Research Funding; Abbvie: Research Funding; Celgene: Research Funding; BMS: Research Funding; Takeda: Research Funding; Vivolux: Research Funding; Amgen: Research Funding; Constellation: Research Funding; Bluebird: Research Funding; Curis: Research Funding. Siegel: Celgene, Takeda, Amgen Inc, Novartis and BMS: Consultancy, Speakers Bureau; Merck: Consultancy. Jagannath: MMRF: Speakers Bureau; Bristol-Meyers Squibb: Consultancy; Merck: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Medicom: Speakers Bureau. Turka: bluebird bio: Employment, Equity Ownership. Lam: bluebird bio: Employment, Equity Ownership. Hege: Celgene Corporation: Employment, Equity Ownership. Morgan: bluebird bio: Employment, Equity Ownership, Patents & Royalties. Quigley: bluebird bio: Employment, Equity Ownership, Patents & Royalties. Kochenderfer: Bluebird bio: Research Funding; N/A: Patents & Royalties: I have multiple patents in the CAR field.; Kite Pharma: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1944-1944 ◽  
Author(s):  
David J Dilillo ◽  
Kara Olson ◽  
Katja Mohrs ◽  
T. Craig Meagher ◽  
Kevin Bray ◽  
...  

Abstract Improving therapies for multiple myeloma (MM) remains a high medical need because of the significant morbidity and mortality of the disease. Targeted immunotherapies represent a promising opportunity to fill this clinical need. B cell maturation antigen (BCMA) is an attractive cell-surface target for MM due to its consistent expression on MM patient malignant plasma cells and expression limited in normal tissue primarily to plasma cells. Redirection of a patient's T cells to recognize tumors by CD3-binding bispecific molecules or through the generation of chimeric antigen receptor (CAR) T cells, has shown preliminary evidence of clinical activity. Bispecific antibodies concurrently engage a tumor antigen on cancer cells and the CD3 signaling machinery on T cells, bringing the tumor cell and T cell into proximity and facilitating T cell activation and tumor cell killing. By contrast, CAR T cell therapy involves re-infusion of the patient's own T cells after ex vivo engineering to express CARs targeting tumor antigens and triggering T cell signaling. Here we describe the generation of REGN5458, a human bispecific antibody that binds to BCMA and CD3. In vitro, REGN5458 efficiently activates T cells and induces polyclonal T cell killing of myeloma cell lines with a range of BCMA cell-surface densities, and also induces cytotoxicity of primary human plasma cells. Similar to gamma-sectretase inhibitors, incubation of myeloma cell lines with REGN5458 increased surface levels of BCMA. In xenogenic studies, after BCMAhigh NCI-H929 and BCMAlow MOLP-8 MM cells were co-implanted with PBMC and grown subcutaneously in immunodeficient NOD/SCID/L2Rgamma-deficient (NSG) mice, REGN5458 doses as low as 0.4 mg/kg significantly suppressed the growth of both tumors. Using aggressive, systemic xenogenic tumor models, in which NSG mice were engrafted with PBMC and intravenously injected with BCMAhigh OPM-2 cells or BCMAlow MOLP-8 cells expressing luciferase, REGN5458 reduced tumor burden and suppressed tumor growth at doses as low as 0.4 mg/kg. In immunocompetent mice genetically engineered to express human CD3, REGN5458 inhibited the growth of syngeneic murine tumors expressing human BCMA at doses as low as 0.04 mg/kg. Finally, as REGN5458 binds to cynomolgus CD3 and BCMA and mediates cytotoxicity of primary cynomolgus plasma cells, the pharmacology of REGN5458 was evaluated in cynomolgus monkeys. REGN5458 administration was well-tolerated, resulting in a mild inflammatory response characterized by transiently increased CRP and serum cytokines. Importantly, REGN5458 treatment led to the depletion of BCMA+ plasma cells in the bone marrow, demonstrating cytotoxic activity in non-human primates. The anti-tumor efficacy of REGN5458 was compared to BCMA-specific CAR T cells using 2nd generation CAR lentiviral constructs containing a single-chain variable fragment binding domain from REGN5458's BCMA binding arm and 4-1BB and CD3z signaling domains. Human PBMC-derived T cells were transduced to express this CAR and expanded. Both REGN5458 and the BCMA CAR T cells demonstrated similar targeted cytotoxicity of myeloma cell lines and primary patient blasts in vitro, and were capable of clearing established systemic OPM-2-luciferase myeloma tumors in NSG mice, but with different kinetics: treatment with REGN5458 resulted in rapid clearance of tumors within 4 days, whereas treatment with BCMA CAR T cells allowed tumors to continue to grow for 10-14 days following injection before rapidly inducing tumor clearance. Thus, REGN5458 exerts its therapeutic effect rapidly after injection, using effector T cells that are already in place. In contrast, BCMA CAR T cells require time to traffic to the tumor site and expand, before exerting anti-tumor effects. Collectively, these data demonstrate the potent pre-clinical anti-tumor activity of REGN5458 that is comparable to that of CAR T cells, and provide a strong rationale for clinical testing of REGN5458 in patients with MM. Disclosures Dilillo: Regeneron Pharmaceuticals: Employment. Olson:Regeneron Pharmaceuticals: Employment. Mohrs:Regeneron Pharmaceuticals: Employment. Meagher:Regeneron Pharmaceuticals: Employment. Bray:Regeneron Pharmaceuticals: Employment. Sineshchekova:Regeneron Pharmaceuticals: Employment. Startz:Regeneron Pharmaceuticals: Employment. Retter:Regeneron Pharmaceuticals: Employment. Godin:Regeneron Pharmaceuticals: Employment. Delfino:Regeneron Pharmaceuticals: Employment. Lin:Regeneron Pharmaceuticals: Employment. Smith:Regeneron Pharmaceuticals: Employment. Thurston:Regeneron Pharmaceuticals: Employment. Kirshner:Regeneron Pharmaceuticals: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2161-2161
Author(s):  
Xiuli Wang ◽  
Ryan Urak ◽  
Walter Miriam ◽  
Laura Lim ◽  
Brenda Aguilar ◽  
...  

Abstract Central nervous system lymphoma (CNSL) is a lymphoid malignancy in which tumors from lymph tissue start in the brain, spinal cord, eye, and/or meninges (primary CNSL) or present as a result of metastasis from initial systemic sites to the CNS (secondary CNSL). The most common CNS lymphomas (about 90%) are B-cell lymphomas. The incidence of primary CNS lymphoma has been increasing over the past 20 years. Multifocal lesions are common. CNS lymphomas carry a worse prognosis than systemic lymphoma. Only a few chemotherapeutic drugs can cross and achieve a therapeutic concentration in the CNS. Therefore, effective treatment is limited and the outcome of disease in relapsed or refractory setting is poor. Recent studies show that intraventricular delivery of rituximab in CNS lymphomas is well tolerated. T cell products that are genetically engineered with chimeric antigen receptors (CARs) targeting CD19 have broad application for adoptive therapy of B cell lineage malignancies and have shown tremendous potential in treatment of systemic lymphoma. In all CD19CAR T cell trials, T cell products are administrated intravenously. CD19CAR T cell trafficking in cerebrospinal fluid (CSF) is frequently reported but most if not all protocols exclude patients with active CNS involvement. In this study, we set out to investigate the feasibility and efficacy of the use of CD19CAR T cells to treat CNSL. Methods and Results: Isolated naïve and central memory T cells (Tn/Tmem) were genetically modified with CD19CAR lentivirus and expanded in vitro for 14 days. 0.1x10^6 human B cell lymphoma Daudi cells were injected intracranially into NSG mice. Tumor was allowed to engraft for 5 days. We administered CD19CAR T cells via three different delivery routes: intracranial local infusion with 1x10^6 CD19CAR T cells (i.c), intracerebroventricular (i.c.v) administration with 1x10^6 cells to bypass the blood-brain barrier and target tumor throughout the entire CNS, and intravenous injection (i.v) with 3x10^6 cells. We repeatedly observed in 2 separate experiments (N=5 mice in each experiment) that both a single i.c infusion and a single i.c.v delivery of CD19CAR T cells were able to completely eradicated CNS lymphoma in all mice by day 14 post CAR T cell infusion; and that a single dose of i.v infusion induced significant anti-CNSL activity with a slightly delayed response as compared to i.c and i.c.v treatment and all mice achieved complete remission 21 days post T cell infusion. CAR T cells were detected in peripheral blood obtained from retro-orbital bleeding, not only in the i.v treated mice, but also in i.c.v treated mice 28 days after CAR T cell infusion, suggesting that i.c.v not only controls CNSL but may also play a role in immune surveillance for systemic tumors. To confirm this, we established an NSG CNS B cell lymphoma model by also inoculating subcutaneous tumors on the animal's flank, 3 weeks prior to i.c tumor injection into the same mouse. CD19CAR T cells were delivered via i.c.v 5 days after i.c. tumor injection. CAR T cell injection resulted in complete remission of both the brain tumor and the flank tumor 14 days after CAR T cell administration. In conclusion,intracerebroventricular delivery of CD19CAR T cells is a promising and feasible therapeutic approach for both primary central nervous system lymphoma and systemic lymphoma with concurrent CNS involvement. Disclosures No relevant conflicts of interest to declare.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 983 ◽  
Author(s):  
Ewelina Grywalska ◽  
Barbara Sosnowska-Pasiarska ◽  
Jolanta Smok-Kalwat ◽  
Marcin Pasiarski ◽  
Paulina Niedźwiedzka-Rystwej ◽  
...  

Despite the significant progress of modern anticancer therapies, multiple myeloma (MM) is still incurable for the majority of patients. Following almost three decades of development, chimeric antigen receptor (CAR) T-cell therapy now has the opportunity to revolutionize the treatment landscape and meet the unmet clinical need. However, there are still several major hurdles to overcome. Here we discuss the recent advances of CAR T-cell therapy for MM with an emphasis on future directions and possible risks. Currently, CAR T-cell therapy for MM is at the first stage of clinical studies, and most studies have focused on CAR T cells targeting B cell maturation antigen (BCMA), but other antigens such as cluster of differentiation 138 (CD138, syndecan-1) are also being evaluated. Although this therapy is associated with side effects, such as cytokine release syndrome and neurotoxicity, and relapses have been observed, the benefit–risk balance and huge potential drive the ongoing clinical progress. To fulfill the promise of recent clinical trial success and maximize the potential of CAR T, future efforts should focus on the reduction of side effects, novel targeted antigens, combinatorial uses of different types of CAR T, and development of CAR T cells targeting more than one antigen.


2020 ◽  
Vol 9 (1) ◽  
pp. 75-88
Author(s):  
Xiuli Wang ◽  
Christian Huynh ◽  
Ryan Urak ◽  
Lihong Weng ◽  
Miriam Walter ◽  
...  

Author(s):  
Alexander Ring ◽  
Antonia Maria Müller

ABSTRACT Introduction: Diffuse large B-cell lymphoma (DLBCL) is the most common neoplasm of the lymphatic system. Treatment and clinical management are difficult in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR) T cells are genetically engineered using autologous patient lymphocytes and have shown very promising results in the treatment of relapsed and refractory cases of DLBCL. Methods: A 64-year-old male patient with refractory DLBCL and central nervous system (CNS) involvement after 9 lines of therapy was treated with CD19-specific CAR T cell therapy at the Department of medical oncology and hematology at the University Hospital of Zurich and followed-up for 10 weeks. Results: Autologous lymphocytes were successfully harvested and transfected/expanded for CAR T cell production. Conditioning chemotherapy and CAR T infusion was well tolerated. Post-infusion side effects were mild (cytokine release syndrome [CRS] grade 1−2), with limited signs of neurotoxicity. Ten weeks after CAR T cell therapy, an excellent response could be documented via PET-CT. The CNS lesion disappeared as assessed via cranial MRI. Conclusion: CD19-targeted CAR T cell therapy is a revolutionary treatment option for heavily pre-treated R/R DLBCL even in the setting of CNS involvement.


Sign in / Sign up

Export Citation Format

Share Document