scholarly journals Transcriptional Networks Identify BRPF1 as a Potential Drug Target Based on Inflammatory Signature in Primary Lower-Grade Gliomas

2021 ◽  
Vol 11 ◽  
Author(s):  
Mingyang Xia ◽  
Huiyao Chen ◽  
Tong Chen ◽  
Ping Xue ◽  
Xinran Dong ◽  
...  

Gliomas are the most common tumors of the central nervous system and are classified into grades I-IV based on their histological characteristics. Lower-grade gliomas (LGG) can be divided into grade II diffuse low-grade gliomas and grade III moderate gliomas and have a relatively good prognosis. However, LGG often develops into high-grade glioma within a few years. This study aimed to construct and identify the prognostic value of an inflammatory signature and discover potential drug targets for primary LGG. We first screened differentially expressed genes in primary LGG (TCGA) compared with normal brain tissue (GTEx) that overlapped with inflammation-related genes from MSigDB. After survival analysis, nine genes were selected to construct an inflammatory signature. LGG patients with a high inflammatory signature score had a poor prognosis, and the inflammatory signature was a strong independent prognostic factor in both the training cohort (TCGA) and validation cohort (CGGA). Compared with the low-inflammatory signature group, differentially expressed genes in the high-inflammatory signature group were mainly enriched in immune-related signaling pathways, which is consistent with the distribution of immune cells in the high- and low-inflammatory signature groups. Integrating driver genes, upregulated genes and drug targets data, bromodomain and PHD finger-containing protein 1 (BRPF1) was selected as a potential drug target. Inhibition of BRPF1 function or knockdown of BRPF1 expression attenuated glioma cell proliferation and colony formation.

2015 ◽  
Vol 34 ◽  
pp. 70-77
Author(s):  
K. Zaveri ◽  
A. Krishna Chaitanya ◽  
I. Bhaskar Reddy

In recent years, insilico approaches have been predicting novel drug targets. The present day development in pharmaceutics mainly ponders on target based drugs and this has been aided by structure based drug designing and subtractive genomics. In the present study, the computational genome subtraction methodology was applied for identification of novel, potential drug target against Bacillus anthracis, cause of deadly anthrax. The potential drug target identified through subtractive genomics approach was considered as polysaccharide deacetylase. By virtual screening against NCI database and Drugbank chemical libraries, two potential lead molecules were predicted. Further the potential lead molecules and target protein were subjected for docking studies using Autodock.


2013 ◽  
Vol 19 (14) ◽  
pp. 2637-2648 ◽  
Author(s):  
Ana Serrano ◽  
Patricia Ferreira ◽  
Marta Martinez-Julvez ◽  
Milagros Medina

2019 ◽  
Vol 20 (3) ◽  
pp. 292-301 ◽  
Author(s):  
Lalit Kumar Gautam ◽  
Prince Sharma ◽  
Neena Capalash

Bacterial infections have always been an unrestrained challenge to the medical community due to the rise of multi-drug tolerant and resistant strains. Pioneering work on Escherichia coli polyphosphate kinase (PPK) by Arthur Kornberg has generated great interest in this polyphosphate (PolyP) synthesizing enzyme. PPK has wide distribution among pathogens and is involved in promoting pathogenesis, stress management and susceptibility to antibiotics. Further, the absence of a PPK orthologue in humans makes it a potential drug target. This review covers the functional and structural aspects of polyphosphate kinases in bacterial pathogens. A description of molecules being designed against PPKs has been provided, challenges associated with PPK inhibitor design are highlighted and the strategies to enable development of efficient drug against this enzyme have also been discussed.


2011 ◽  
Vol 8 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Lakshminarayanan Karthik ◽  
Palayam Malathy ◽  
Annie Trinitta ◽  
Krishnasamy Gunasekaran

2021 ◽  
Author(s):  
Nattawadee Panyain ◽  
Aurélien Godinat ◽  
Aditya Raymond Thawani ◽  
Sofía Lachiondo-Ortega ◽  
Katie Mason ◽  
...  

Ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme (DUB), is a potential drug target in various cancers, and liver and lung fibrosis. However, bona fide functions and substrates of UCHL1...


2014 ◽  
Vol 30 (7) ◽  
pp. 350-360 ◽  
Author(s):  
Amanda M. Goldston ◽  
Aabha I. Sharma ◽  
Kimberly S. Paul ◽  
David M. Engman

Sign in / Sign up

Export Citation Format

Share Document