scholarly journals Differential Impact of Cysteine Cathepsins on Genetic Mouse Models of De novo Carcinogenesis: Cathepsin B as Emerging Therapeutic Target

2012 ◽  
Vol 3 ◽  
Author(s):  
Thomas Reinheckel ◽  
Christoph Peters ◽  
Achim Krüger ◽  
Boris Turk ◽  
Olga Vasiljeva
2019 ◽  
Vol 37 (4_suppl) ◽  
pp. 595-595
Author(s):  
Babar Bashir ◽  
Dante Merlino ◽  
Jeffrey Rappaport ◽  
Esteban D Gnass ◽  
Juan Palazzo ◽  
...  

595 Background: CRCs arise through distinct mutations, including in APC pathway leading to tubular adenomas (TAs); in BRAF, with epigenetic silencing of CDX2, leading to serrated adenomas (SAs); and in the DNA mismatch repair machinery driving microsatellite instability (MSI). The APC pathway involves loss of the hormone guanylin, silencing the tumor suppressing receptor GUCY2C. Indeed, oral hormone replacement is an emerging strategy to reactivate GUCY2C and prevent CRC. Moreover, retained expression by tumors arising from TAs has established GUCY2C as a therapeutic target to prevent and treat metastatic CRC. Here, we defined the potential role of the guanylin-GUCY2C axis, and its suitability as a target, in tumors arising through the SA and MSI pathways. Methods: We compared guanylin-GUCY2C protein and mRNA expression between human TAs (n = 18), SAs (n = 15), MSI tumors (n = 7) and their matched normal adjacent tissue. Genetic mouse models of serrated and MSI tumors were used to confirm findings and elucidate mechanisms. Results: Guanylin hormone was eliminated in TAs, SAs and MSI tumors compared to their normal adjacent tissues. In contrast to the hormone, the tumor suppressing receptor GUCY2C was retained in TAs and MSI tumors. Surprisingly, GUCY2C expression was nearly eliminated in SAs reflecting loss of the transcription factor CDX2. Changes in the guanylin-GUCY2C axis in human SAs and MSI tumors were precisely recapitulated in genetic mouse models. Conclusions: Guanylin is universally lost at the earliest stages of transformation in tumors arising through divergent genomic mechanisms suggesting its utility as a biomarker of CRC initiation. These data reveal the possibility of guanylin loss silencing GUCY2C in the pathophysiology of, and oral hormone replacement to restore GUCY2C signaling to prevent, MSI tumors. Also, they highlight the potential for targeting GUCY2C to prevent and treat metastases arising from TAs and MSI tumors. In contrast, loss of GUCY2C excludes patients with SAs as candidates for GUCY2C-based prevention and therapy.


2022 ◽  
Vol 79 (1) ◽  
Author(s):  
Ana Mitrović ◽  
Janja Završnik ◽  
Georgy Mikhaylov ◽  
Damijan Knez ◽  
Urša Pečar Fonović ◽  
...  

AbstractNew therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention. Our results indicate that the triazole-based selective reversible inhibitor of cathepsin X named Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) significantly reduces tumor progression, both in vitro in cell-based functional assays and in vivo in two independent tumor mouse models: the FVB/PyMT transgenic and MMTV-PyMT orthotopic breast cancer mouse models. One of the mechanisms by which cathepsin X contributes to cancer progression is the compensation of cathepsin-B activity loss. Our results confirm that cathepsin-B inhibition is compensated by an increase in cathepsin X activity and protein levels. Furthermore, the simultaneous inhibition of both cathepsins B and X with potent, selective, reversible inhibitors exerted a synergistic effect in impairing processes of tumor progression in in vitro cell-based assays of tumor cell migration and spheroid growth. Taken together, our data demonstrate that Z9 impairs tumor progression both in vitro and in vivo and can be used in combination with other peptidase inhibitors as an innovative approach to overcome resistance to antipeptidase therapy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kohei Kitagawa ◽  
Kensuke Matsumura ◽  
Masayuki Baba ◽  
Momoka Kondo ◽  
Tomoya Takemoto ◽  
...  

AbstractAutism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


2014 ◽  
Vol 57 (14) ◽  
pp. 6092-6104 ◽  
Author(s):  
Morshed A. Chowdhury ◽  
Ignace A. Moya ◽  
Shardul Bhilocha ◽  
Cody C. McMillan ◽  
Brady G. Vigliarolo ◽  
...  

Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 674 ◽  
Author(s):  
Chiaho Shih ◽  
Chun-Che Liao ◽  
Ya-Shu Chang ◽  
Szu-Yao Wu ◽  
Chih-Shin Chang ◽  
...  

Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.


Endocrinology ◽  
2006 ◽  
Vol 147 (9) ◽  
pp. 4048-4055 ◽  
Author(s):  
William B. Kinlaw ◽  
Jennifer L. Quinn ◽  
Wendy A. Wells ◽  
Christopher Roser-Jones ◽  
Joel T. Moncur

Spot 14 (S14) is a nuclear protein that communicates the status of dietary fuels and fuel-related hormones to genes required for long-chain fatty acid synthesis. In mammary gland, S14 is important for both epithelial proliferation and milk fat production. The S14 gene is amplified in some breast cancers and is strongly expressed in most. High expression of S14 in primary invasive breast cancer is conspicuously predictive of recurrence. S14 mediates the induction of lipogenesis by progestin in breast cancer cells and accelerates their growth. Conversely, S14 knockdown impairs de novo lipid synthesis and causes apoptosis. We found that breast cancer cells do not express lipoprotein lipase (LPL) and hypothesize that they do not have access to circulating lipids unless the local environment supplies it. This may explain why primary breast cancers with low S14 do not survive transit from the LPL-rich mammary fat pad to areas devoid of LPL, such as lymph nodes, and thus do not appear as distant metastases. Thus, S14 is a marker for aggressive breast cancer and a potential target as well. Future effort will center on validation of S14 as a therapeutic target and producing antagonists of its action.


Sign in / Sign up

Export Citation Format

Share Document