scholarly journals Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy

Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 674 ◽  
Author(s):  
Chiaho Shih ◽  
Chun-Che Liao ◽  
Ya-Shu Chang ◽  
Szu-Yao Wu ◽  
Chih-Shin Chang ◽  
...  

Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.

2021 ◽  
Vol 12 ◽  
Author(s):  
Michael Pisano ◽  
Yan Cheng ◽  
Fumou Sun ◽  
Binod Dhakal ◽  
Anita D’Souza ◽  
...  

Mouse models of human cancer provide an important research tool for elucidating the natural history of neoplastic growth and developing new treatment and prevention approaches. This is particularly true for multiple myeloma (MM), a common and largely incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes, called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic lesions and kidney failure among other forms of end-organ damage. The most widely used mouse models used to aid drug and immunotherapy development rely on in vivo propagation of human myeloma cells in immunodeficient hosts (xenografting) or myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both strategies have made and continue to make valuable contributions to preclinical myeloma, including immune research, yet are ill-suited for studies on tumor development (oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known Vκ*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de novo (spontaneously) in a highly predictable fashion and accurately recapitulate many hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a complete innate and adaptive immune response and tumor development reproduces the natural course of human myelomagenesis, beginning with monoclonal gammopathy of undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and eventually transitioning to frank neoplasia. Here we review the utility of transplantation-based and transgenic mouse models of human MM for research on immunopathology and -therapy of plasma cell malignancies, discuss strengths and weaknesses of different experimental approaches, and outline opportunities for closing knowledge gaps, improving the outcome of patients with myeloma, and working towards a cure.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 985 ◽  
Author(s):  
Yixuan Wang ◽  
Huiqiang Wang ◽  
Xinbei Jiang ◽  
Zhi Jiang ◽  
Tingting Guo ◽  
...  

Enterovirus 71 (EV-A71) is the main causative pathogen of childhood hand, foot and mouth disease. Effective medicine is currently unavailable for the treatment of this viral disease. Using the fragment-hopping strategy, a series of 2-aryl-isoindolin-1-one compounds were designed, synthesized and investigated for their in vitro antiviral activity towards multiple EV-A71 clinical isolates (H, BrCr, Shenzhen98, Jiangsu52) in Vero cell culture in this study. The structure–activity relationship (SAR) studies identified 2-phenyl-isoindolin-1-ones as a new potent chemotype with potent antiviral activity against EV-A71. Ten out of the 24 tested compounds showed significant antiviral activity (EC50 < 10 µM) towards four EV-A71 strains. Compounds A3 and A4 exhibited broad and potent antiviral activity with the 50% effective concentration (EC50) values in the range of 1.23–1.76 μM. Moreover, the selectivity indices of A3 and A4 were significantly higher than those of the reference compound, pirodavir. The western blotting experiment indicated that the viral VP1 was significantly decreased at both the protein and RNA level in a dose-dependent manner following treatment with compound A3. Moreover, compound A3 inhibited the viral replication by acting on the virus entry stage. In summary, this study led to the discovery of 2-aryl-isoindolin-1-ones as a promising scaffold with potent anti-EV-A71 activities, which deserves further in-depth studies.


Author(s):  
Kuan-Chi Tseng ◽  
Bang-Yan Hsu ◽  
Pin Ling ◽  
Wen-Wen Lu ◽  
Cheng-Wen Lin ◽  
...  

Enterovirus 71 (EV71) is an etiological agent of hand foot and mouth disease and can also cause neurological complications in young children. However, there are no approved drugs to treat EV71 infections. In this study, we conducted an antiviral drug screening by using a Food and Drug Administration (FDA)-approved drug library. We identified five drugs that showed dose-dependent inhibition of viral replication. Sertraline was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index among the five hits. The antiviral activity of sertraline was noted for other EV serotypes. The drug’s antiviral effect is not likely associated with its approved indications as an antidepressant and its mode-of-action as a selective serotonin reuptake inhibitor. The time-of-addition assay revealed that sertraline inhibited an EV71 infection at the entry stage. We also showed that sertraline partitioned into acidic compartments, such as endolysosomes, to neutralize the low pH levels. In agreement with the findings, the antiviral effect of sertraline could be relieved greatly by exposing virus-infected cells to extracellular low-pH culture media. Together, we have identified an FDA-approved antidepressant with the new indication for the broad-spectrum EV inhibition by blocking viral entry through the alkalization of the endolysosomal route.


2005 ◽  
Vol 86 (5) ◽  
pp. 1391-1401 ◽  
Author(s):  
Minetaro Arita ◽  
Hiroyuki Shimizu ◽  
Noriyo Nagata ◽  
Yasushi Ami ◽  
Yuriko Suzaki ◽  
...  

Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease and is sometimes associated with serious neurological disorders. In this study, an attempt was made to identify molecular determinants of EV71 attenuation of neurovirulence in a monkey infection model. An infectious cDNA clone of the virulent strain of EV71 prototype BrCr was constructed; temperature-sensitive (ts) mutations of an attenuated strain of EV71 or of poliovirus (PV) Sabin vaccine strains were then introduced into the infectious clone. In vitro and in vivo phenotypes of the parental and mutant viruses were analysed in cultured cells and in cynomolgus monkeys, respectively. Mutations in 3D polymerase (3Dpol) and in the 3′ non-translated region (NTR), corresponding to ts determinants of Sabin 1, conferred distinct temperature sensitivity to EV71. An EV71 mutant [EV71(S1-3′)] carrying mutations in the 5′ NTR, 3Dpol and in the 3′ NTR showed attenuated neurovirulence, resulting in limited spread of virus in the central nervous system of monkeys. These results indicate that EV71 and PV1 share common genetic determinants of neurovirulence in monkeys, despite the distinct properties in their original pathogenesis.


2019 ◽  
Vol 93 (24) ◽  
Author(s):  
Yang Sun ◽  
Qizhen Zheng ◽  
Yaxin Wang ◽  
Zhengyuan Pang ◽  
Jingwei Liu ◽  
...  

ABSTRACT Virus-encoded proteases play diverse roles in the efficient replication of enterovirus 71 (EV71), which is the causative agent of human hand, foot, and mouth disease (HFMD). However, it is unclear how host proteases affect viral proliferation. Here, we designed activity-based probes (ABPs) based on an inhibitor of the main EV71 protease (3Cpro), which is responsible for the hydrolysis of the EV71 polyprotein, and successfully identified host candidates that bind to the ABPs. Among the candidates, the host cysteine protease autophagy-related protein 4 homolog B (ATG4B), a key component of the autophagy machinery, was demonstrated to hydrolytically process the substrate of EV71 3Cpro and had activity comparable to that of the viral protease. Genetic disruption of ATG4B confirmed that the enzyme is indispensable for viral proliferation in vivo. Our results not only further the understanding of host-virus interactions in EV71 biology but also provide a sample for the usage of activity-based proteomics to reveal host-pathogen interactions. IMPORTANCE Enterovirus 71 (EV71), one of the major pathogens of human HFMD, has caused outbreaks worldwide. How EV71 efficiently assesses its life cycle with elaborate interactions with multiple host factors remains to be elucidated. In this work, we deconvoluted that the host ATG4B protein processes the viral polyprotein with its cysteine protease activity and helps EV71 replicate through a chemical biology strategy. Our results not only further the understanding of the EV71 life cycle but also provide a sample for the usage of activity-based proteomics to reveal host-pathogen interactions.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 625 ◽  
Author(s):  
Wenwen Dai ◽  
Jinpeng Bi ◽  
Fang Li ◽  
Shuai Wang ◽  
Xinyu Huang ◽  
...  

Enterovirus 71 (EV71) infection is known to cause hand, foot, and mouth disease (HFMD), which is associated with neurological complications; however, there is currently no effective treatment for this infection. Flavonoids are a large group of naturally occurring compounds with multiple bioactivities, and the inhibitory effects of several flavonoids against EV71 have been studied in cell cultures; however, to date, there are no reported data on their effects in animal models. In this study, we confirmed the in vitro activities of eight flavonoids against EV71 infection, based on the inhibition of cytopathic effects. Moreover, these flavonoids were found to reduce viral genomic RNA replication and protein synthesis. We further demonstrated the protective efficacy of these flavonoids in newborn mice challenged with a lethal dose of EV71. Apigenin, luteolin, kaempferol, formononetin, and penduletin conferred survival protection of 88.89%, 91.67%, 88.89%, 75%, and 66.67%, respectively, from the lethal EV71 challenge. In addition, isorhamnetin provided the highest mice survival protection of 100% at a dose of 10 mg/kg. This study, to the best of our knowledge, is the first to evaluate the in vivo anti-EV7l activities of multiple flavonoids, and we accordingly identified flavonoids as potential leading compounds for anti-EV71 drug development.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 109
Author(s):  
Kuan-Chi Tseng ◽  
Bang-Yan Hsu ◽  
Pin Ling ◽  
Wen-Wen Lu ◽  
Cheng-Wen Lin ◽  
...  

Enterovirus 71 (EV71) is an etiological agent of hand foot and mouth disease and can also cause neurological complications in young children. However, there are no approved drugs as of yet to treat EV71 infections. In this study, we conducted antiviral drug screening by using a Food and Drug Administration (FDA)-approved drug library. We identified five drugs that showed dose-dependent inhibition of viral replication. Sertraline was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index among the five hits. The antiviral activity of sertraline was noted for other EV serotypes. The drug’s antiviral effect is not likely associated with its approved indications as an antidepressant and its mode-of-action as a selective serotonin reuptake inhibitor. The time-of-addition assay revealed that sertraline inhibited an EV71 infection at the entry stage. We also showed that sertraline partitioned into acidic compartments, such as endolysosomes, to neutralize the low pH levels. In agreement with the findings, the antiviral effect of sertraline could be greatly relieved by exposing virus-infected cells to extracellular low-pH culture media. Ultimately, we have identified a use for an FDA-approved antidepressant in broad-spectrum EV inhibition by blocking viral entry through the alkalization of the endolysosomal route.


2011 ◽  
Vol 60 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Fei Zhou ◽  
Fanrong Kong ◽  
Bin Wang ◽  
Kenneth McPhie ◽  
Gwendolyn L. Gilbert ◽  
...  

Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the species Human enterovirus A, and are both major and independent aetiological agents of hand-foot-and-mouth disease. The human enterovirus (HEV) 5′ untranslated region (UTR) is fundamentally important for efficient virus replication and for virulence, whilst the VP1 region correlates well with antigenic typing by neutralization, and can be used for virus identification and evolutionary studies. A comparison was undertaken of the 5′UTR and VP1 nucleotide sequences of five EV71 clinical isolates and 10 CVA16 clinical isolates from one laboratory with the 5′UTR and VP1 sequences of 104 EV71 strains and 45 CVA16 strains available in GenBank. The genetic relationships were analysed using standard phylogenetic methods. The EV71 phylogenetic analysis showed that the VP1 sequences were clustered into three genogroups, A, B and C, with genogroups B and C further divided into five subgenogroups, B1–B5 and C1–C5, respectively. All EV71 strains were clustered similarly in the 5′UTR and VP1 trees, except for one Taiwanese strain, which demonstrated different clustering in the two trees, suggesting a recombination event in the phylogeny. The CVA16 phylogenetic analysis showed that the VP1 sequences were clustered into two genogroups, A and B, with genogroup B further divided into B1 (B1a and B1b), B2 and a possible B3; and that a similar pattern and grouping of all strains were displayed in the 5′UTR tree. This study demonstrated that comparing the two regions provides evidence of epidemiological linkage of HEV-A strains, and that mutation in the two regions plays a vital role in the evolution of these viruses. The combination of molecular typing and phylogenetic sequence analysis will be beneficial in both individual patient diagnosis and public health measures.


2015 ◽  
Vol 89 (23) ◽  
pp. 12084-12095 ◽  
Author(s):  
Zhiqiang Ku ◽  
Xiaohua Ye ◽  
Jinping Shi ◽  
Xiaoli Wang ◽  
Qingwei Liu ◽  
...  

ABSTRACTAntibodies play a critical role in immunity against enterovirus 71 (EV71). However, how EV71-specific antibodies neutralize infections remains poorly understood. Here we report the working mechanism for a group of three monoclonal antibodies (MAbs) that potently neutralize EV71. We found that these three MAbs (termed D5, H7, and C4, respectively) recognize the same conserved neutralizing epitope within the VP1 GH loop of EV71. Single MAbs in this group, exemplified by D5, could inhibit EV71 infection in cell cultures at both the pre- and postattachment stages in a cell type-independent manner. Specifically, MAb treatment resulted in the blockade of multiple steps of EV71 entry, including virus attachment, internalization, and subsequent uncoating and RNA release. Furthermore, we show that the D5 and C4 antibodies can interfere with EV71 binding to its key receptors, including heparan sulfate, SCARB2, and PSGL-1, thus providing a possible explanation for the observed multi-inhibitory function of the MAbs. Collectively, our study unravels the mechanism of neutralization by a unique group of anti-EV71 MAbs targeting the conserved VP1 GH loop. The findings should enhance our understanding of MAb-mediated immunity against enterovirus infections and accelerate the development of MAb-based anti-EV71 therapeutic drugs.IMPORTANCEEnterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), which has caused significant morbidities and mortalities in young children. Neither a vaccine nor an antiviral drug is available. Neutralizing antibodies are major protective components in EV71 immunity. Here, we unraveled an unusual mechanism of EV71 neutralization by a group of three neutralizing monoclonal antibodies (MAbs). All of these MAbs bound the same conserved epitope located at the VP1 GH loop of EV71. Interestingly, mechanistic studies showed that single antibodies in this MAb group could block EV71 attachment and internalization during the viral entry process and interfere with EV71 binding to heparan sulfate, SCARB2, and PSGL-1 molecules, which are key receptors involved in different steps of EV71 entry. Our findings greatly enhance the understanding of the interplays among EV71, neutralizing antibodies, and host receptors, which in turn should facilitate the development of an MAb-based anti-EV71 therapy.


2021 ◽  
Vol 118 (10) ◽  
pp. e2025596118
Author(s):  
Ming Tian ◽  
Hwei-Ling Cheng ◽  
Michael T. Kimble ◽  
Kelly McGovern ◽  
Peyton Waddicor ◽  
...  

V(D)J recombination generates mature B cells that express huge repertoires of primary antibodies as diverse immunoglobulin (Ig) heavy chain (IgH) and light chain (IgL) of their B cell antigen receptors (BCRs). Cognate antigen binding to BCR variable region domains activates B cells into the germinal center (GC) reaction in which somatic hypermutation (SHM) modifies primary variable region-encoding sequences, with subsequent selection for mutations that improve antigen-binding affinity, ultimately leading to antibody affinity maturation. Based on these principles, we developed a humanized mouse model approach to diversify an anti-PD1 therapeutic antibody and allow isolation of variants with novel properties. In this approach, component Ig gene segments of the anti-PD1 antibody underwent de novo V(D)J recombination to diversify the anti-PD1 antibody in the primary antibody repertoire in the mouse models. Immunization of these mouse models further modified the anti-PD1 antibodies through SHM. Known anti-PD1 antibodies block interaction of PD1 with its ligands to alleviate PD1-mediated T cell suppression, thereby boosting antitumor T cell responses. By diversifying one such anti-PD1 antibody, we derived many anti-PD1 antibodies, including anti-PD1 antibodies with the opposite activity of enhancing PD1/ligand interaction. Such antibodies theoretically might suppress deleterious T cell activities in autoimmune diseases. The approach we describe should be generally applicable for diversifying other therapeutic antibodies.


Sign in / Sign up

Export Citation Format

Share Document