scholarly journals Hepatoprotective Effect and Molecular Mechanisms of Hengshun Aromatic Vinegar on Non-Alcoholic Fatty Liver Disease

2020 ◽  
Vol 11 ◽  
Author(s):  
Shenghu Zhu ◽  
Linshu Guan ◽  
Xuemei Tan ◽  
Guoquan Li ◽  
Changjie Sun ◽  
...  

Aromatic vinegar with abundant bioactive components can be used as a food additive to assist the treatment of various diseases. However, its effect on non-alcoholic fatty liver disease (NAFLD) is still unknown. The purpose of this study was to investigate the mechanism of Hengshun aromatic vinegar in preventing NAFLD in vivo and in vitro. Aromatic vinegar treatment was applied to rats fed with a high-fat diet (HFD) and HepG2 cells challenged with palmitic acid (PA). Our results showed that aromatic vinegar markedly improved cell viabilities and attenuated cell damage in vitro. The levels of TC, TG, FFA, AST, ALT, and malondialdehyde (MDA) in HFD-induced rats were significantly decreased by aromatic vinegar. Mechanism investigation revealed that aromatic vinegar markedly up-regulated the level of silent information regulator of transcription 1 (Sirt1), and thereby inhibited inflammation of the pathway through down-regulating the expressions of high mobility group box 1, toll-likereceptor-4, nuclear transcription factor-κB, tumor necrosis factor receptor-associated factor-6, and inflammatory factors. Aromatic vinegar simultaneously increased the expression of farnesoid X receptor and suppressed expressions of lipogenesis related proteins, including fatty acid synthase, acetyl-CoA carboxylase-1, sterol regulatory element binding transcription factor 1, and stearoyl-CoA desaturase-1. These results were further validated by knockdown of Sirt1 using siRNAs silencing in vitro. In conclusion, Hengshun aromatic vinegar showed protective effects against NAFLD by enhancing the activity of SIRT1 and thereby inhibiting lipogenesis and inflammation pathways, which is expected to become a new assistant strategy for NAFLD therapy in the future.

2020 ◽  
Vol 1 (2) ◽  
pp. 51-74 ◽  
Author(s):  
Noel C. Salvoza ◽  
Pablo J. Giraudi ◽  
Claudio Tiribelli ◽  
Natalia Rosso

Non-alcoholic fatty liver disease (NAFLD) remains a major cause of chronic liver disease worldwide. Despite extensive studies, the heterogeneity of the risk factors as well as different disease mechanisms complicate the goals toward effective diagnosis and management. Recently, it has been shown that sex differences play a role in the prevalence and progression of NAFLD. In vitro, in vivo, and clinical studies revealed that the lower prevalence of NAFLD in premenopausal as compared to postmenopausal women and men is mainly due to the protective effects of estrogen and body fat distribution. It has been also described that males and females present differential pathogenic features in terms of biochemical profiles and histological characteristics. However, the exact molecular mechanisms for the gender differences that exist in the pathogenesis of NAFLD are still elusive. Lipogenesis, oxidative stress, and inflammation play a key role in the progression of NAFLD. For NAFLD, only a few studies characterized these mechanisms at the molecular level. Therefore, we aim to review the reported differential molecular mechanisms that trigger such different pathogenesis in both sexes. Differences in lipid metabolism, glucose homeostasis, oxidative stress, inflammation, and fibrosis were discussed based on the evidence reported in recent publications. In conclusion, with this review, we hope to provide a new perspective for the development of future practice guidelines as well as a new avenue for the management of the disease.


2021 ◽  
Vol 24 (4) ◽  
pp. 120
Author(s):  
T.S. Sall ◽  
E.S. Shcherbakova ◽  
S.I. Sitkin ◽  
T.Ya. Vakhitov ◽  
I.G. Bakulin ◽  
...  

2019 ◽  
Vol 16 (3) ◽  
pp. 37-45
Author(s):  
Ekaterina E. Mishina ◽  
Alexander Y. Mayorov ◽  
Apollinariya V. Bogolyubova ◽  
Pavel O. Bogomolov ◽  
Maria V. Matsievich ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, and is considered to be the liver manifestation of metabolic syndrome. Currently, there is no etiotropic treatment of NAFLD, so an active research for new methods of treatment is underway. In the meantime, drugs are used to treat comorbid conditions, such as dyslipidemia, arterial hypertension, obesity, type 2 diabetes, which are present in varying degrees in patients. This review considers medications that are used in patients with NAFLD and related concomitant features, and also describes new strategies for regressing changes in liver tissue in NAFLD. In our opinion, one of the promising groups of drugs are agonists of the farnesoid X receptor (FXR). FXR belongs to the group of nuclear receptors, which are ligand-activated transcription factors that regulate the genes involved in metabolism. FXR agonists can claim to be a new promising drug for the treatment of NAFLD and related diseases influencing carbohydrate metabolism, fat metabolism, bile acid metabolism, as well as inflammatory processes in the liver to ensure metabolic homeostasis.


2019 ◽  
Vol 20 (9) ◽  
pp. 2325 ◽  
Author(s):  
Hua Li ◽  
Wonbeak Yoo ◽  
Hye-Mi Park ◽  
Soo-Youn Lim ◽  
Dong-Ha Shin ◽  
...  

Arazyme, a metalloprotease from the spider Nephila clavata, exerts hepatoprotective activity in CCL4-induced acute hepatic injury. This study investigated the hepatoprotective effects in high-fat diet (HFD)-induced non-alcoholic fatty liver disease-like C57BL/6J mice. The mice were randomly divided into four groups (n = 10/group): the normal diet group, the HFD group, the arazyme group (HFD with 0.025% arazyme), and the milk thistle (MT) group (HFD with 0.1% MT). Dietary supplementation of arazyme for 13 weeks significantly lowered plasma triglyceride (TG) and non-esterified fatty acid levels. Suppression of HFD-induced hepatic steatosis in the arazyme group was caused by the reduced hepatic TG and total cholesterol (TC) contents. Arazyme supplementation decreased hepatic lipogenesis-related gene expression, sterol regulatory element-binding transcription protein 1 (Srebf1), fatty acid synthase (Fas), acetyl-CoA carboxylase 1 (Acc1), stearoyl-CoA desaturase-1 (Scd1), Scd2, glycerol-3-phosphate acyltransferase (Gpam), diacylglycerol O-acyltransferase 1 (Dgat1), and Dgat2. Arazyme directly reduced palmitic acid (PA)-induced TG accumulation in HepG2 cells. Arazyme suppressed macrophage infiltration and tumor necrosis factor α (Tnfa), interleukin-1β (Il1b), and chemokine-ligand-2 (Ccl2) expression in the liver, and inhibited secretion of TNFα and expression of inflammatory mediators, Tnfa, Il1b, Ccl2, Ccl3, Ccl4, and Ccl5, in PA-induced RAW264.7 cells. Arazyme effectively protected hepatic steatosis and steatohepatitis by inhibiting SREBP-1-mediated lipid accumulation and macrophage-mediated inflammation.


Author(s):  
Lingling Guan ◽  
Lan Guo ◽  
Heng Zhang ◽  
Hao Liu ◽  
Yuan Qiao ◽  
...  

Abstract Background and Purpose: The autophagic degradation of lipid droplets (LDs), termed lipophagy, is the main mechanism contributing to lipid consumption in hepatocytes. The identification of effective and safe natural compounds that target lipophagy to eliminate excess lipids may be a potential therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Here, we investigated the effects of naringin on NAFLD and the underlying mechanism. Experimental Approach: The role of naringin was investigated in mice fed a high-fat diet (HFD) to induce NAFLD, as well as in AML12 cells and primary hepatocytes stimulated by palmitate (PA). Transcription factor EB (TFEB)-knockdown AML12 cells and hepatocyte-specific TFEB-knockout mice were also used for the mechanism study. In vivo and in vitro studies were conducted using transmission electron microscopy, immunofluorescence techniques and western blot analysis. Key Results: We found that naringin treatment effectively relieved HFD-induced hepatic steatosis in mice and inhibited palmitate (PA)-induced lipid accumulation in hepatocytes. The increased p62 and LC3-II levels observed with excess lipid-support autophagosome accumulation and impaired autophagic flux. Treatment with naringin restored TFEB-mediated lysosomal biogenesis, thereby promoting the fusion of autophagosomes and lysosomes, restoring impaired autophagic flux and further inducing lipophagy. However, the knockdown of TFEB in hepatocytes or the hepatocyte-specific knockout of TFEB in mice abrogated naringin-induced lipophagy, which eliminated the therapeutic effect of naringin on hepatic steatosis. Conclusion and Implications: These results demonstrate that TFEB-mediated lysosomal biogenesis and subsequent lipophagy play essential roles in the ability of naringin to mitigate hepatic steatosis and suggest that naringin is a promising drug for treating or relieving NAFLD.


Sign in / Sign up

Export Citation Format

Share Document