scholarly journals A Large Impact of Obesity on the Disposition of Ivermectin, Moxidectin and Eprinomectin in a Canine Model: Relevance for COVID-19 Patients

2021 ◽  
Vol 12 ◽  
Author(s):  
Alain Bousquet-Mélou ◽  
Anne Lespine ◽  
Jean-François Sutra ◽  
Isabelle Bargues ◽  
Pierre-Louis Toutain

Ivermectin (IVM) and moxidectin (MOX) are used extensively as parasiticides in veterinary medicine. Based on in vitro data, IVM has recently been proposed for the prevention and treatment of COVID-19 infection, a condition for which obesity is a major risk factor. In patients, IVM dosage is based on total body weight and there are no recommendations to adjust dosage in obese patients. The objective of this study was to establish, in a canine model, the influence of obesity on the clearance and steady-state volume of distribution of IVM, MOX, and a third analog, eprinomectin (EPR). An experimental model of obesity in dogs was based on a high calorie diet. IVM, MOX, and EPR were administered intravenously, in combination, to a single group of dogs in two circumstances, during a control period and when body weight had been increased by 50%. In obese dogs, clearance, expressed in absolute values (L/day), was not modified for MOX but was reduced for IVM and EPR, compared to the initial control state. However, when scaled by body weight (L/day/kg), plasma clearance was reduced by 55, 42, and 63%, for IVM, MOX and EPR, respectively. In contrast, the steady-state volume of distribution was markedly increased, in absolute values (L), by obesity. For IVM and MOX, this obese dog model suggests that the maintenance doses in the obese subject should be based on lean body weight rather than total weight. On the other hand, the loading dose, when required, should be based on the total body weight of the obese subject.

Author(s):  
Alain Bousquet-Melou ◽  
Anne Lespine ◽  
Jean-François Sutra ◽  
Isabelle Bargues ◽  
Pierre Louis Toutain

Background and Purpose: Based on in vitro data, ivermectin (IVM) has been proposed for the prevention and treatment of COVID-19, a condition for which obesity is a major risk factor. IVM dosage is based on total body weight and there are no recommendations to adjust dosage in obese patients. The objective of this study was to establish, in a canine model, the influence of obesity on the clearance and steady-state volume of distribution of IVM and two analog compounds, moxidectin (MOX) and eprinomectin (EPR). Experimental Approach: An experimental model of obesity in dogs was based on a high calorie diet. IVM, MOX and EPR were administered intravenously, simultaneously in combination, to a single group of dogs in two circumstances, during a control period and when body weight had been increased by 50%. Key Results: In obese dogs, clearance, expressed in absolute values (L/day), was not modified for MOX and reduced for IVM and EPR, compared to the initial control state. When scaled by body weight (L/day/kg), plasma clearance was reduced by 42, 55 and 63%, for MOX, IVM and EPR, respectively. In contrast, the steady-state volume of distribution was markedly increased in absolute values (L) by obesity. Conclusion and Implications: For IVM and MOX, the obese dog model suggests that the maintenance dose should not be adjusted by total body weight in the obese subject but should be based on lean body weight. On the other hand, the loading dose should be computed based on the total body weight of the obese subject.


2012 ◽  
Vol 57 (3) ◽  
pp. 1144-1149 ◽  
Author(s):  
Amira A. Bhalodi ◽  
Pavlos K. Papasavas ◽  
Darren S. Tishler ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACTThe pharmacokinetics of linezolid was assessed in 20 adult volunteers with body mass indices (BMI) of 30 to 54.9 kg/m2receiving 5 intravenous doses of 600 mg every 12 h. Pharmacokinetic analyses were conducted using compartmental and noncompartmental methods. The mean (±standard deviation) age, height, and weight were 42.2 ± 12.2 years, 64.8 ± 3.5 in, and 109.5 ± 18.2 kg (range, 78.2 to 143.1 kg), respectively. Linezolid pharmacokinetics in this population were best described by a 2-compartment model with nonlinear clearance (original value, 7.6 ± 1.9 liters/h), which could be inhibited to 85.5% ± 12.2% of its original value depending on the concentration in an empirical inhibition compartment, the volume of the central compartment (24.4 ± 9.6 liters), and the intercompartment transfer constants (K12andK21) of 8.04 ± 6.22 and 7.99 ± 5.46 h−1, respectively. The areas under the curve for the 12-h dosing interval (AUCτ) were similar between moderately obese and morbidly obese groups: 130.3 ± 60.1 versus 109.2 ± 25.5 μg · h/ml (P= 0.32), and there was no significant relationship between the AUC or clearance and any body size descriptors. A significant positive relationship was observed for the total volume of distribution with total body weight (r2= 0.524), adjusted body weight (r2= 0.587), lean body weight (r2= 0.495), and ideal body weight (r2= 0.398), but not with BMI (r2= 0.171). Linezolid exposure in these obese participants was similar overall to that of nonobese patients, implying that dosage adjustments based on BMI alone are not required, and standard doses for patients with body weights up to approximately 150 kg should provide AUCτ values similar to those seen in nonobese participants.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Moreno Zanardo ◽  
Fabio Martino Doniselli ◽  
Anastassia Esseridou ◽  
Massimiliano Agrò ◽  
Nicol Antonina Rita Panarisi ◽  
...  

Abstract Objectives Iodinated contrast media (ICM) could be more appropriately dosed on patient lean body weight (LBW) than on total body weight (TBW). Methods After Ethics Committee approval, trial registration NCT03384979, patients aged ≥ 18 years scheduled for multiphasic abdominal CT were randomised for ICM dose to LBW group (0.63 gI/kg of LBW) or TBW group (0.44 gI/kg of TBW). Abdominal 64-row CT was performed using 120 kVp, 100–200 mAs, rotation time 0.5 s, pitch 1, Iopamidol (370 mgI/mL), and flow rate 3 mL/s. Levene, Mann–Whitney U, and χ2 tests were used. The primary endpoint was liver contrast enhancement (LCE). Results Of 335 enrolled patients, 17 were screening failures; 44 dropped out after randomisation; 274 patients were analysed (133 LBW group, 141 TBW group). The median age of LBW group (66 years) was slightly lower than that of TBW group (70 years). Although the median ICM-injected volume was comparable between groups, its variability was larger in the former (interquartile range 27 mL versus 21 mL, p = 0.01). The same was for unenhanced liver density (IQR 10 versus 7 HU) (p = 0.02). Median LCE was 40 (35–46) HU in the LBW group and 40 (35–44) HU in the TBW group, without significant difference for median (p = 0.41) and variability (p = 0.23). Suboptimal LCE (< 40 HU) was found in 64/133 (48%) patients in the LBW group and 69/141 (49%) in the TBW group, but no examination needed repeating. Conclusions The calculation of the ICM volume to be administered for abdominal CT based on the LBW does not imply a more consistent LCE.


Author(s):  
Ryan D Dunn ◽  
Ryan L Crass ◽  
Joseph Hong ◽  
Manjunath P Pai ◽  
Lynne C Krop

Abstract Purpose To compare methods of estimating vancomycin volume of distribution (V) in adults with class III obesity. Methods A retrospective, multicenter pharmacokinetic analysis of adults treated with vancomycin and monitored through measurement of peak and trough concentrations was performed. Individual pharmacokinetic parameter estimates were obtained via maximum a posteriori Bayesian analysis. The relationship between V and body weight was assessed using linear regression. Mean bias and root-mean-square error (RMSE) were calculated to assess the precision of multiple methods of estimating V. Results Of 241 patients included in the study sample, 159 (66.0%) had a BMI of 40.0–49.9 kg/m2, and 82 (34.0%) had a BMI of ≥50.0 kg/m2. The median (5th, 95th percentile) weight of patients was 136 (103, 204) kg, and baseline characteristics were similar between BMI groups. The mean ± S.D. V was lower in patients with a BMI of 40.0–49.9 kg/m2 than in those with a BMI of ≥50.0 kg/m2 (72.4 ± 19.6 L versus 79.3 ± 20.6 L, p = 0.009); however, body size poorly predicted V in regression analyses (R2 < 0.20). A fixed estimate of V (75 L) or use of 0.52 L/kg by total body weight yielded similar bias and error in this population. Conclusion Results of the largest analysis of vancomycin V in class III obesity to date indicated that use of a fixed V value (75 L) and use of a TBW-based estimate (0.52 L/kg) for estimation of vancomycin V in patients with a BMI of ≥40.0 kg/m2 have similar bias. Two postdistribution vancomycin concentrations are needed to accurately determine patient-specific pharmacokinetic parameters, estimate AUC, and improve the precision of vancomycin dosing in this patient population.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Alaa Sabry ◽  
Amir Basiony ◽  
Mohamed Kamal

Abstract Background and Aims Obesity is a potent risk factor for the development of kidney disease. The prevalence of abdominal obesity in Egyptians based upon the European cut-off points was 30.2% for men and 70.9% for women. To detect the best formula for estimation of glomerular filtration rates in morbidly obese individuals. Method: In this prospective study 82 morbidly obese patients were included, Age: 15 to 65 years, Morbidly obese patient (BMI &gt; 40 Kg/m2), Creatinine clearance calculated from a 24-h urine was done, Estimated glomerular filtration rate (eGFR): It was assessed to be correlated with creatinine clearance and detect the most suitable formula for morbidly obese patients. Cockcroft-Gault formula:  Cockcroft-Gault formula (for total body weight): ockcroft-Gault formula (for adjusted body weight): Cockcroft-Gault formula (for lean body weight), MDRD-eGFR (Modification of Diet in Renal Disease equation) (Shahbaz & Gupta, 2019), CKD-epidemiology (CKD-EPI): (Levey, et al, 2009) Results Demogrphic criteria of the studdied patients Conclusion: The equations that had the nearest values to creatinine clearance were CG-TBW-GFR and CGAjBW- GFR, both of them had a moderate reliability with more agreement for the CG-TBW-GFR equation . The CG-TBW-GFR formula was the most reliable one to measure GFR, followed by the CG-AjBW-GFR formula, while the CG-IBW, CG-LBW, MDRD-GFR and CKD-EPI-GFR formulae were not reliable at all .


2020 ◽  
Vol 10 ◽  
pp. 100131
Author(s):  
Fernanda Corrêa Devito ◽  
Geni Cristina Fonseca Patricio ◽  
Patrícia Bonifácio Flôr ◽  
Thiago Henrique Annibale Vendramini ◽  
Andressa Rodrigues Amaral ◽  
...  

1963 ◽  
Vol 41 (1) ◽  
pp. 2225-2235
Author(s):  
A. DesMarais ◽  
P. A. Lachance

The well known reduction in growth rate of cold-acclimated rats has been shown to depend on a decreased gain in total body fat, without change in the gain in lean body weight. This has been observed in rats fed Lab Chow or a high-fat diet ad libitum. In those groups fed a high-carbohydrate diet ad libitum or calorie-restricted high-fat or high-carbohydrate diets, exposure to cold had no effect on the gain in neither total body weight nor lean body weight, which were already reduced by the diet; in those animals, the significant decrease in the gain in total body fat upon exposure to cold was compensated by a slight but unsignificant increase in the gain in lean body weight, so that differences in gain in total body weight were not significant.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2169
Author(s):  
Kyung-Ah Cho ◽  
Da-Won Choi ◽  
Yu-Hee Kim ◽  
Jungwoo Kim ◽  
Kyung-Ha Ryu ◽  
...  

Skeletal muscle mass is decreased under a wide range of pathologic conditions. In particular, chemotherapy is well known for inducing muscle loss and atrophy. Previous studies using tonsil-derived mesenchymal stem cells (T-MSCs) or a T-MSC-conditioned medium showed effective recovery of total body weight in the chemotherapy-preconditioned bone marrow transplantation mouse model. This study investigated whether extracellular vesicles of T-MSCs, such as exosomes, are a key player in the recovery of body weight and skeletal muscle mass in chemotherapy-treated mice. T-MSC exosomes transplantation significantly decreased loss of total body weight and muscle mass in the busulfan-cyclophosphamide conditioning regimen in BALB/c recipient mice containing elevated serum activin A. Additionally, T-MSC exosomes rescued impaired C2C12 cell differentiation in the presence of activin A in vitro. We found that T-MSC exosomes possess abundant miR-145-5p, which targets activin A receptors, ACVR2A, and ACVR1B. Indeed, T-MSC exosomes rescue muscle atrophy both in vivo and in vitro via miR-145-5p dependent manner. These results suggest that T-MSC exosomes have therapeutic potential to maintain or improve skeletal muscle mass in various activin A elevated pathologic conditions.


2021 ◽  
Vol 11 (3) ◽  
pp. 159
Author(s):  
Daan J. de Jong ◽  
Wouter B. Veldhuis ◽  
Frank J. Wessels ◽  
Bob de Vos ◽  
Pim Moeskops ◽  
...  

In contrast-enhanced computed tomography, total body weight adapted contrast injection protocols have proven successful in achieving a homogeneous enhancement of vascular structures and liver parenchyma. However, because solid organs have greater perfusion than adipose tissue, the lean body weight (fat-free mass) rather than the total body weight is theorised to cause even more homogeneous enhancement. We included 102 consecutive patients who underwent a multiphase abdominal computed tomography between March 2016 and October 2019. Patients received contrast media (300 mgI/mL) according to bodyweight categories. Using regions of interest, we measured the Hounsfield unit (HU) increase in liver attenuation from unenhanced to contrast-enhanced computed tomography. Furthermore, subjective image quality was graded using a four-point Likert scale. An artificial intelligence algorithm automatically segmented and determined the body compositions and calculated the percentages of lean body weight. The hepatic enhancements were adjusted for iodine dose and iodine dose per total body weight, as well as percentage lean body weight. The associations between enhancement and total body weight, body mass index, and lean body weight were analysed using linear regression. Patients had a median age of 68 years (IQR: 58–74), a total body weight of 81 kg (IQR: 73–90), a body mass index of 26 kg/m2 (SD: ±4.2), and a lean body weight percentage of 50% (IQR: 36–55). Mean liver enhancements in the portal venous phase were 61 ± 12 HU (≤70 kg), 53 ± 10 HU (70–90 kg), and 53 ± 7 HU (≥90 kg). The majority (93%) of scans were rated as good or excellent. Regression analysis showed significant correlations between liver enhancement corrected for injected total iodine and total body weight (r = 0.53; p < 0.001) and between liver enhancement corrected for lean body weight and the percentage of lean body weight (r = 0.73; p < 0.001). Most benefits from personalising iodine injection using %LBW additive to total body weight would be achieved in patients under 90 kg. Liver enhancement is more strongly associated with the percentage of lean body weight than with the total body weight or body mass index. The observed variation in liver enhancement might be reduced by a personalised injection based on the artificial-intelligence-determined percentage of lean body weight.


Sign in / Sign up

Export Citation Format

Share Document