scholarly journals Berberine Alleviates Non-alcoholic Steatohepatitis Through Modulating Gut Microbiota Mediated Intestinal FXR Activation

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiangbing Shu ◽  
Meng Li ◽  
Ying Cao ◽  
Chunlin Li ◽  
Wenjun Zhou ◽  
...  

Berberine is a natural plant alkaloid isolated from a diverse range of genera, it obtains anti-inflammatory, anti-obesity, and hepatoprotective properties, and is a promising agent for non-alcoholic steatohepatitis (NASH). Farnesoid X receptor (FXR) is a bile acid receptor and a drug target for NASH, however, the underlying mechanisms of berberine on regulating FXR are still unknown. In the present study, we feed mice with a 12-week high-fat diet with interval dextran sulfate sodium (0.5% in drinking water) diet to induce NASH, and treat the mice with berberine (100 mg/kg per day) via oral gavage for additional 4 weeks. We demonstrate that administration of berberine alleviates steatosis and infiltration of inflammatory cells in the liver of NASH mice. We apply 16S ribosomal DNA sequencing to screen the structure of gut microbiota, and ultra-performance liquid chromatography-tandem mass spectrometry analysis to determine the bile acid profiles. The results show that berberine modulates gut dysbiosis, and specifically increases the relative abundance of Clostridiales, Lactobacillaceae, and Bacteroidale. Berberine modulated microbiomes are associated with bile acid de-conjugation and transformation, which are consistent with the altered bile acid species (e.g., deoxycholic acid, ursodeoxycholic acid) upon berberine treatment. BA species that respond to berberine treatment are known FXR agonists, thus we performed quantitative Real Time-PCR and western blot to examine the FXR pathway, and find that berberine up-regulates intestinal FXR and fibroblast growth factor 15 (FGF15) expression, and the secretion of FGF15 further inhibits lipogenesis and nuclear factor-κB activation in the liver. Whereas the beneficial effects of berberine are blunted in FXR knockout mice. Our results reveal that berberine alleviates NASH by modulating the interplay of gut microbiota and bile acid metabolism, as well as the subsequent intestinal FXR activation.

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Ming-liang Chen ◽  
Long Yi ◽  
Yong Zhang ◽  
Xi Zhou ◽  
Li Ran ◽  
...  

ABSTRACT The gut microbiota is found to be strongly associated with atherosclerosis (AS). Resveratrol (RSV) is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine- N -oxide (TMAO)-induced AS in ApoE −/− mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA) production via gut microbiota remodeling in mice. Moreover, RSV increased levels of the genera Lactobacillus and Bifidobacterium , which increased the bile salt hydrolase activity, thereby enhancing bile acid (BA) deconjugation and fecal excretion in C57BL/6J and ApoE −/− mice. This was associated with a decrease in ileal BA content, repression of the enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) axis, and increased cholesterol 7a-hydroxylase (CYP7A1) expression and hepatic BA neosynthesis. An FXR antagonist had the same effect on FGF15 and CYP7A1 expression as RSV, while an FXR agonist abolished RSV-induced alterations in FGF15 and CYP7A1 expression. In mice treated with antibiotics, RSV neither decreased TMAO levels nor increased hepatic BA synthesis. Additionally, RSV-induced inhibition of TMAO-caused AS was also markedly abolished by antibiotics. In conclusion, RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling, and the BA neosynthesis was partially mediated through the enterohepatic FXR-FGF15 axis. IMPORTANCE Recently, trimethylamine- N -oxide (TMAO) has been identified as a novel and independent risk factor for promoting atherosclerosis (AS) partially through inhibiting hepatic bile acid (BA) synthesis. The gut microbiota plays a key role in the pathophysiology of TMAO-induced AS. Resveratrol (RSV) is a natural phytoalexin with prebiotic benefits. A growing body of evidence supports the hypothesis that phenolic phytochemicals with poor bioavailability are possibly acting primarily through remodeling of the gut microbiota. The current study showed that RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling. And RSV-induced hepatic BA neosynthesis was partially mediated through downregulating the enterohepatic farnesoid X receptor-fibroblast growth factor 15 axis. These results offer new insights into the mechanisms responsible for RSV’s anti-AS effects and indicate that the gut microbiota may become an interesting target for pharmacological or dietary interventions to decrease the risk of developing cardiovascular diseases.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3926
Author(s):  
Nana Zhang ◽  
Jianlin Liu ◽  
Xinxin Guo ◽  
Shuying Li ◽  
Fengzhong Wang ◽  
...  

Armillaria luteo-virens Sacc (ALS) is a rare wild Chinese medicinal and edible basidiomycete. However, its protective effect on intestinal functions and the underlying mechanism is still unknown. This work explored the improvement of dextran sulfate sodium (DSS)-induced colitis by ALS. ALS supplementation markedly improved colitis symptoms, gut barrier integrity, and goblet loss in DSS-treated mice. In addition, ALS inhibited colonic inflammation through the inhibition/activation of the mitogen-activated protein kinases/NF-κB signaling pathway. The 16S rRNA gene-based microbiota analysis revealed that ALS altered the gut microbiota composition, decreasing the richness of Enterobacteriaceae and increasing the abundance of Lactobacillaceae. The bile-acid-targeted metabolomic analysis showed that ALS recovered the microbial bile acid metabolism in the gut, enabling the activation of the farnesoid X receptor signaling by these acids, thus maintaining the intestinal homeostasis. Importantly, broad-spectrum antibiotic treatment reduced the efficacy of ALS-induced protection from colitis. Overall, our findings suggest that ALS may represent a novel approach in the nutritional intervention to prevent colitis.


2020 ◽  
Author(s):  
Xinjian Wan ◽  
Xin Ye ◽  
Qian Zhuang ◽  
Zhixia Dong ◽  
Xiaoxin Wang ◽  
...  

Abstract Background Cholesterol gallstone (CGS) disease is characterized by an imbalance in bile acid (BA) metabolism and is closely associated with gut microbiota disorders. However, the role and mechanism by which probiotics targeting the gut microbiota attenuate CGS are still unknown. In this study, Lactobacillus reuteri CGMCC 17942 (LR) and L. plantarum CGMCC 14407 (LP) were individually administered to lithogenic diet (LD)-fed mice at a dosage of 109 CFU/day for 8 weeks. Results Both Lactobacillus strains significantly reduced LD-induced gallstones, hepatic steatosis, and hyperlipidemia. These strains modulated serum BA profiles, with significantly decreased conjugated primary BA taurine-β-muricholic acid (T-β-MCA), an FXR antagonist. At the molecular level, LR and LP increased Farnesoid X Receptor (FXR) expression in the liver but not in the ileum, increased the levels of ileum and liver fibroblast growth factor 15 (FGF15) and liver FGFR4, small heterodimer partner (SHP), and subsequently reduced cholesterol 7α-hydroxylase (CYP7A1) and cytochrome P450 family 7 subfamily B polypeptide 1 (CYP7B1) to inhibit BA synthesis in the liver. At the same time, the two strains enhanced BA transport by increasing the levels of multidrug-resistance-associated protein homologs (MRP) 3/4, multidrug-resistance-associated protein homologs (MRP) 3/4, hepatic multidrug resistance protein (MDR2) and bile salt export pump (BSEP) mRNA in the liver. In addition, both LR and LP reduced LD-associated gut microbiota dysbiosis. LR increased the relative abundance of Muribaculaceae, while LP increased that of Akkermansia. The changed gut microbiota was significantly negatively correlated with the grade and incidence of gallstones, hyperlipidemia, the level of T-β-MCA in serum, or the gene expression levels of Fxr in liver. Furthermore, the protective effects of the two strains were abolished by a global but not intestinal-specific FXR antagonist. Conclusions Taken together, our results suggested that Lactobacillus might relieve gallstones through FXR-dependent regulation of BA synthesis and transport.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S161-S161
Author(s):  
M Xu ◽  
Y Shen ◽  
M Cen

Abstract Background Inflammatory bowel disease (IBD) is associated with gut dysbiosis and dysregulation of bile acid metabolism. A high luminal content of deoxycholic acid (DCA) with consumption of a Westernized diet is implicated in the pathogenesis of IBD. The aim of the study is to explore the role of intestinal microbiota and bile acid metabolism in mice with DCA-induced intestinal inflammation. Methods 4-week-old wild-type C57BL mice were fed with AIN-93G (control diet), AIN-93G+0.2% DCA, AIN-93G+0.2% DCA+6 weeks of fexaramine (FXR agonist), or AIN-93G+0.2% DCA+antibiotic cocktail for 24 weeks. Histopathology, Western blotting, and qPCR were performed on the intestinal tissue. Fecal microbiota was analyzed by 16S rDNA sequencing. Fecal bile acid and short-chain fatty acid (SCFA) levels were analyzed by chromatography. Results Gut dysbiosis and enlarged bile acid pool were observed in DCA-treated mice, accompanied by a lower farnesoid X receptor (FXR) activity in the intestine. Administration of fexaramine mitigated DCA-induced intestinal injury, restored intestinal FXR activity, activated fibroblast growth factor 15, and normalized bile acid metabolism. Furthermore, fexaramine administration increased the abundance of SCFA-producing bacteria. Depletion of the commensal microbiota with antibiotics decreased the diversity of the intestinal microbiota, attenuated bile acid synthesis, and reduced intestinal inflammation induced by DCA. Conclusion DCA induced-intestinal inflammation is associated with alterations of gut microbiota and bile acid profiles. Interventions targeting the gut microbiota-FXR signaling pathway may reduce DCA-induced intestinal disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Li Liu ◽  
Min Yang ◽  
Wenxiao Dong ◽  
Tianyu Liu ◽  
Xueli Song ◽  
...  

Background. Patients with prolonged inflammatory bowel disease (IBD) can develop into colorectal cancer (CRC), also called colitis-associated cancer (CAC). Studies have shown the association between gut dysbiosis, abnormal bile acid metabolism, and inflammation process. Here, we aimed to investigate these two factors in the CAC model. Methods. C57BL/6 mice were randomly allocated to two groups: azoxymethane/dextran sodium sulfate (AOM/DSS) and control. The AOM/DSS group received AOM injection followed by DSS drinking water. Intestinal inflammation, mucosal barrier, and bile acid receptors were determined by real-time PCR and immunohistochemistry. Fecal microbiome and bile acids were detected via 16S rRNA sequencing and liquid chromatography-mass spectrometry. Results. The AOM/DSS group exhibited severe mucosal barrier impairment, inflammatory response, and tumor formation. In the CAC model, the richness and biodiversity of gut microbiota were decreased, along with significant alteration of composition. The abundance of pathogens was increased, while the short-chain fatty acids producing bacteria were reduced. Interestingly, Clostridium XlV and Lactobacillus, which might be involved in the bile acid deconjugation, transformation, and desulfation, were significantly decreased. Accordingly, fecal bile acids were decreased, accompanied by reduced transformation of primary to secondary bile acids. Given bile acid receptors, the ileum farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) axis was downregulated, while Takeda G-protein receptor 5 (TGR5) was overexpressed in colonic tumor tissues. Conclusion. Gut dysbiosis might alter the metabolism of bile acids and promote CAC, which would provide a potential preventive strategy of CAC by regulating gut microbiota and bile acid metabolism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen-wen Zhao ◽  
Meng Xiao ◽  
Xia Wu ◽  
Xiu-wei Li ◽  
Xiao-xi Li ◽  
...  

Bile acid (BA) metabolism is an attractive therapeutic target in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the effect of ilexsaponin A1 (IsA), a major bioactive ingredient of Ilex, on high-fat diet (HFD)-induced NAFLD in mice with a focus on BA homeostasis. Male C57BL/6J mice were fed an HFD to induce NAFLD and were treated with IsA (120 mg/kg) for 8 weeks. The results showed that administration of IsA significantly decreased serum total cholesterol (TC), attenuated liver steatosis, and decreased total hepatic BA levels in HFD-induced NAFLD mice. IsA-treated mice showed increased BA synthesis in the alternative pathway by upregulating the gene expression levels of sterol 27-hydroxylase (CYP27A1) and cholesterol 7b-hydroxylase (CYP7B1). IsA treatment accelerated efflux and decreased uptake of BA in liver by increasing hepatic farnesoid X receptor (FXR) and bile salt export pump (BSEP) expression, and reducing Na+-taurocholic acid cotransporting polypeptide (NTCP) expression. Alterations in the gut microbiota and increased bile salt hydrolase (BSH) activity might be related to enhanced fecal BA excretion in IsA-treated mice. This study demonstrates that consumption of IsA may prevent HFD-induced NAFLD and exert cholesterol-lowering effects, possibly by regulating the gut microbiota and BA metabolism.


2021 ◽  
Vol 22 (19) ◽  
pp. 10858
Author(s):  
Chao Yang ◽  
Min Wan ◽  
Dengfeng Xu ◽  
Da Pan ◽  
Hui Xia ◽  
...  

Non-alcoholic steatohepatitis (NASH) is gradually becoming one of the most common and health-endangering diseases; therefore, it is very important to prevent the occurrence of NASH and prevent simple non-alcoholic fatty liver (NAFL) from further developing into NASH. We fed mice a high-fat diet (HFD, 60% fat) for 14 weeks to induce NAFL and then fed different doses of flaxseed powder (low (10%), middle (20%), and high (30%)) to the mice for 28 weeks. After the animal experiment, we analyzed fecal bile acid (BA) profiles of the HFD mice, flaxseed-fed (FLA-fed) mice, and control mice with a normal diet (10% fat) using a targeted metabolomics approach, and we analyzed the gut microbiota at the same time. We also investigated the mechanistic role of BAs in NASH and identified whether the altered BAs strongly bind to colonic FXR or TGR5. In the present study, we found that 28-week FLA treatment notably alleviated NASH development in NAFL model mice fed with an HFD, and the beneficial effects may be attributed to the regulation of and improvement in the gut flora- and microbiota-related BAs, which then activate the intestinal FXR-FGF15 and TGR5-NF-κB pathways. Our data indicate that FLA might be a promising functional food for preventing NASH through regulating microbiomes and BAs.


Sign in / Sign up

Export Citation Format

Share Document