scholarly journals Plasmodium falciparum Multidrug Resistance Proteins (pfMRPs)

2021 ◽  
Vol 12 ◽  
Author(s):  
José Pedro Gil ◽  
Cláudia Fançony

The capacity of the lethal Plasmodium falciparum parasite to develop resistance against anti-malarial drugs represents a central challenge in the global control and elimination of malaria. Historically, the action of drug transporters is known to play a pivotal role in the capacity of the parasite to evade drug action. MRPs (Multidrug Resistance Protein) are known in many phylogenetically diverse groups to be related to drug resistance by being able to handle a large range of substrates, including important endogenous substances as glutathione and its conjugates. P. falciparum MRPs are associated with in vivo and in vitro altered drug response, and might be important factors for the development of multi-drug resistance phenotypes, a latent possibility in the present, and future, combination therapy environment. Information on P. falciparum MRPs is scattered in the literature, with no specialized review available. We herein address this issue by reviewing the present state of knowledge.

2021 ◽  
Author(s):  
Fawad Ali ◽  
Hira Wali ◽  
Saadia Jan ◽  
Muneeba Aslam ◽  
Imtiaz Ahmad ◽  
...  

Abstract Background: Plasmodium falciparum is an obligate intracellular parasite of humans that causes malaria. P. falciparum is a major public health threat to human life responsible for high mortality. Currently, the risk of multi-drug resistance of P. falciparum is rapidly increasing. There is a need to address new anti-malarial therapeutics strategies to combat the drug-resistance threat.Methods: We retrieved the P. falciparum essential proteins from the recently published studies. Pathogen essential proteins were initially scanned against human host and its gut microbiome proteome sets by comparative proteomics analyses. The human host non-homologs essential proteins of P. falciparum were additionally analyzed for druggability potential via in silico methods to possibly identify novel therapeutic targets.Results: The analyses identified six P. falciparum essential and human host non-homolog proteins that follow the key druggability features. These druggable targets have not catalogued so far in the Drugbank repository. These prioritized proteins seem novel and promising drug targets against P. falciparum due to their key protein-protein interactions features in pathogen-specific biological pathways and to hold appropriate drug-like molecule binding pockets. Conclusion: The prioritized protein targets may worthy to test in malarial drug discovery program to overcome the anti-malarial resistance issues. The in-vitro and in-vivo studies might be promising for additional validation of these prioritized lists of drug targets against malaria.


2006 ◽  
Vol 86 (3) ◽  
pp. 849-899 ◽  
Author(s):  
Roger G. Deeley ◽  
Christopher Westlake ◽  
Susan P. C. Cole

Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human “C” branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies “long” (MRP1, -2, -3, -6, and -7) and “short” (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fawad Ali ◽  
Hira Wali ◽  
Saadia Jan ◽  
Asad Zia ◽  
Muneeba Aslam ◽  
...  

Abstract Background Plasmodium falciparum is an obligate intracellular parasite of humans that causes malaria. Falciparum malaria is a major public health threat to human life responsible for high mortality. Currently, the risk of multi-drug resistance of P. falciparum is rapidly increasing. There is a need to address new anti-malarial therapeutics strategies to combat the drug-resistance threat. Methods The P. falciparum essential proteins were retrieved from the recently published studies. These proteins were initially scanned against human host and its gut microbiome proteome sets by comparative proteomics analyses. The human host non-homologs essential proteins of P. falciparum were additionally analysed for druggability potential via in silico methods to possibly identify novel therapeutic targets. Finally, the PfAp4AH target was prioritized for pharmacophore modelling based virtual screening and molecular docking analyses to identify potent inhibitors from drug-like compounds databases. Results The analyses identified six P. falciparum essential and human host non-homolog proteins that follow the key druggability features. These druggable targets have not been catalogued so far in the Drugbank repository. These prioritized proteins seem novel and promising drug targets against P. falciparum due to their key protein–protein interactions features in pathogen-specific biological pathways and to hold appropriate drug-like molecule binding pockets. The pharmacophore features based virtual screening of Pharmit resource predicted a lead compound i.e. MolPort-045–917-542 as a promising inhibitor of PfAp4AH among prioritized targets. Conclusion The prioritized protein targets may worthy to test in malarial drug discovery programme to overcome the anti-malarial resistance issues. The in-vitro and in-vivo studies might be promising for additional validation of these prioritized lists of drug targets against malaria.


2011 ◽  
Vol 50 ◽  
pp. 179-207 ◽  
Author(s):  
Andrew J. Slot ◽  
Steven V. Molinski ◽  
Susan P.C. Cole

Subfamily C of the human ABC (ATP-binding cassette) superfamily contains nine proteins that are often referred to as the MRPs (multidrug-resistance proteins). The ‘short’ MRP/ABCC transporters (MRP4, MRP5, MRP8 and ABCC12) have a typical ABC structure with four domains comprising two membrane-spanning domains (MSD1 and MSD2) each followed by a nucleotide-binding domain (NBD1 and NBD2). The ‘long’ MRP/ABCCs (MRP1, MRP2, MRP3, ABCC6 and MRP7) have five domains with the extra domain, MSD0, at the N-terminus. The proteins encoded by the ABCC6 and ABCC12 genes are not known to transport drugs and are therefore referred to as ABCC6 and ABCC12 (rather than MRP6 and MRP9) respectively. A large number of molecules are transported across the plasma membrane by the MRPs. Many are organic anions derived from exogenous sources such as conjugated drug metabolites. Others are endogenous metabolites such as the cysteinyl leukotrienes and prostaglandins which have important signalling functions in the cell. Some MRPs share a degree of overlap in substrate specificity (at least in vitro), but differences in transport kinetics are often substantial. In some cases, the in vivo substrates for some MRPs have been discovered aided by studies in gene-knockout mice. However, the molecules that are transported in vivo by others, including MRP5, MRP7, ABCC6 and ABCC12, still remain unknown. Important differences in the tissue distribution of the MRPs and their membrane localization (apical in contrast with basolateral) in polarized cells also exist. Together, these differences are responsible for the unique pharmacological and physiological functions of each of the nine ABCC transporters known as the MRPs.


Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2723-2731 ◽  
Author(s):  
P Schwarzenberger ◽  
S Spence ◽  
N Lohrey ◽  
T Kmiecik ◽  
DL Longo ◽  
...  

To develop a rapid preclinical in vivo model to study gene transfer into human hematopoietic progenitor cells, MO-7e cells (CD-34+, c-kit+) were infected with multidrug resistance (MDR1)-containing retroviruses and then transplanted into nonobese diabetic severe combined immunodeficient mice (NOD SCID). MO-7e cells infected with a retrovirus encoding the human MDR1 cDNA showed integration, transcription, and expression of the transfered MDR1 gene. This resulted in a 20-fold increase in the resistance of MO-7e cells to paclitaxel in vitro. The expression of the MDR1 gene product was stable over a 6-month period in vitro without selection in colchicine. MO-7e and MDR1-infected MO-7e cells were transplanted into NOD SCID mice to determine whether MDR1 could confer drug resistance in vivo. A sensitive polymerase chain reaction method specific for human sequences was developed to quantitate the level of human cell engraftment in NOD SCID bone marrow (BM) cells. The percentage of human DNA in BM cells from MO-7e- transplanted mice was 10.9% and decreased to 0.7% in mice treated with paclitaxel. The percentage of human DNA in infected-MO-7e transplanted mice was 7.6% and that level was unchanged in mice treated with paclitaxel. These results show that expression of the MDR1 gene in human hematopoietic progenitor cells can confer functional drug resistance in an in vivo model.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Carolina Soekmadji ◽  
Colleen C. Nelson

Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.


2021 ◽  
Author(s):  
xingang wang ◽  
YAN ZHENG ◽  
YU WANG

Abstract Background and AimsPseudopodium-enriched atypical kinase 1 (PEAK1) has reported to be upregulated in human malignancies and related with poor prognosis. Enhanced PEAK1 expression facilitates tumor cell survival, invasion, metastasis and chemoresistance. However, the role of PEAK1 in breast cancer is not clear. Here, we investigated the PEAK1 expression in breast cancer and analyzed its relation with clinicopathological status and chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated the role of PEAK1 on breast cancer cells in vitro and in vivo. MethodsImmunohistochemistry (IHC) was performed in 112 surgical resected breast cancer tissues. The associations between clinicopathological status, multi-drug resistance and PEAK1 expression were determined. Effect of PEAK1 overexpression or down-expression on proliferation, colony formation, invasion, migration, metastasis and Doxorubicin sensitivity in the MCF-7 cells in vitro and in vivo was detected. ResultsPEAK1 was overexpressed in breast cancer tissues and NAC -resistant breast cancer tissues. High PEAK1 expression was related with tumor size, high tumor grade, T stage, LN metastasis, recurrence, Ki-67 expression, Her-2 expression and multi-drug resistance. Targeting PEAK1 inhibited cell growth, invasion, metastasis and reversed chemoresistance to Doxorubicin in breast cancer cells in vitro and in vivo. ConclusionHigh PEAK1 expression was associated with invasion, metastasis and chemoresistance of breast cancers. Furthermore, targeting PEAK1 could inhibit cell growth and metastasis, and reverse chemoresistance in breast cancer cells, which provides an effective treatment strategies for breast cancer.


Sign in / Sign up

Export Citation Format

Share Document