scholarly journals Synergistic Effect of Proteinase Activity by Purification and Identification of Toxic Protease From Nemopilema nomurai

2021 ◽  
Vol 12 ◽  
Author(s):  
Chunlin Yu ◽  
Rongfeng Li ◽  
Xiujing Yin ◽  
Huahua Yu ◽  
Pengcheng Li

Scyphozoan Nemopilema nomurai envenomation is an unresolved threat to human health in Asian waters. Nemopilema nomurai venom metalloproteinases show important toxicities in skin damage and inflammation, but there is still no purified protein for further studies. In this study, high proteinase activity fractions in tentacle autolysis were isolated by ammonium sulfate precipitation, DEAE Sepharose Fast Flow, and Superdex 75 chromatography successively. Purification was guided by azocasein hydrolysis activity and SDS-PAGE. The final products were analyzed by LC-MS/MS. Four elution peaks purified by Superdex 75 chromatography had multiple protein bands but did not show proteinase activity. These fractions would recover proteinase activity after mixing again. Regulation mechanisms were speculated as binding metalloproteinase regulator or disaggregating metalloproteinase inhibitor by LC-MS/MS analysis. For the first time, a synergistic effect in N. nomurai proteinase activity was found in the purification process.

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 311
Author(s):  
Indu Choudhary ◽  
Duhyeon Hwang ◽  
Jinho Chae ◽  
Wonduk Yoon ◽  
Changkeun Kang ◽  
...  

Jellyfish venom is well known for its local skin toxicities and various lethal accidents. The main symptoms of local jellyfish envenomation include skin lesions, burning, prickling, stinging pain, red, brown, or purplish tracks on the skin, itching, and swelling, leading to dermonecrosis and scar formation. However, the molecular mechanism behind the action of jellyfish venom on human skin cells is rarely understood. In the present study, we have treated the human HaCaT keratinocyte with Nemopilema nomurai jellyfish venom (NnV) to study detailed mechanisms of actions behind the skin symptoms after jellyfish envenomation. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/MS), cellular changes at proteome level were examined. The treatment of NnV resulted in the decrease of HaCaT cell viability in a concentration-dependent manner. Using NnV (at IC50), the proteome level alterations were determined at 12 h and 24 h after the venom treatment. Briefly, 70 protein spots with significant quantitative changes were picked from the gels for MALDI-TOF/MS. In total, 44 differentially abundant proteins were successfully identified, among which 19 proteins were increased, whereas 25 proteins were decreased in the abundance levels comparing with their respective control spots. DAPs involved in cell survival and development (e.g., Plasminogen, Vinculin, EMILIN-1, Basonuclin2, Focal adhesion kinase 1, FAM83B, Peroxisome proliferator-activated receptor-gamma co-activator 1-alpha) decreased their expression, whereas stress or immune response-related proteins (e.g., Toll-like receptor 4, Aminopeptidase N, MKL/Myocardin-like protein 1, hypoxia up-regulated protein 1, Heat shock protein 105 kDa, Ephrin type-A receptor 1, with some protease (or peptidase) enzymes) were up-regulated. In conclusion, the present findings may exhibit some possible key players during skin damage and suggest therapeutic strategies for preventing jellyfish envenomation.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850057 ◽  
Author(s):  
Reza Meshkini Far ◽  
Olena V. Ischenko ◽  
Alla G. Dyachenko ◽  
Oleksandr Bieda ◽  
Snezhana V. Gaidai ◽  
...  

Here, we report, for the first time, on the catalytic hydrogenation of CO2 to methane at atmospheric pressure. For the preparation of hydrogenation catalysts based on Ni and Fe metals, a convenient method is developed. According to this method, low-temperature reduction of the co-precipitated Ni and Fe oxides with hydrogen gives the effective and selective bimetallic Ni[Formula: see text]Fe[Formula: see text], Ni[Formula: see text]Fe[Formula: see text] and Ni[Formula: see text]Fe[Formula: see text] catalysts. At the temperature range of 300–400[Formula: see text]C, they exhibit a high efficiency of CH4 production with respect to monometallic Ni and Fe catalysts. The results imply a synergistic effect between Ni and Fe which caused the superior activity of the Ni[Formula: see text]Fe[Formula: see text] catalyst conversing [Formula: see text]% of CO2 into CH4 at 350[Formula: see text]C. To adapt the Ni–Fe catalysts in the industry, the effect of two different carriers on the efficiency of the alumina-supported Ni[Formula: see text]Fe[Formula: see text] catalyst was investigated. It is found that the Ni[Formula: see text]Fe[Formula: see text]/[Formula: see text]-Al2O3 catalyst effectively conversed CO2 giving 100% methane yield already at 275[Formula: see text]C.


2017 ◽  
Vol 18 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Dzun Noraini Jimat ◽  
Intan Baizura Firda Mohamed ◽  
Azlin Suhaida Azmi ◽  
Parveen Jamal

A newly bacterial producing L-asparaginase was successful isolated from Sungai Klah Hot Spring, Perak, Malaysia and identified as Bacillus sp. It was the best L-asparaginase producer as compared to other isolates. Production of L-asparaginase from the microbial strain was carried out under liquid fermentation. The crude enzyme was then centrifuged and precipitated with ammonium sulfate before further purified with chromatographic method. The ion exchange chromatography HiTrap DEAE-Sepharose Fast Flow column followed by separation on Superose 12 gel filtration were used to obtain pure enzyme. The purified enzyme showed 10.11 U/mg of specific activity, 50.07% yield with 2.21 fold purification. The purified enzyme was found to be dimer in form, with a molecular weight of 65 kDa as estimated by SDS-PAGE. The maximum activity of the purified L-asparaginase was observed at pH 9 and temperature of 60°C.


2018 ◽  
Vol 6 (27) ◽  
pp. 13062-13074 ◽  
Author(s):  
Jiangnan Huang ◽  
Yuhang Li ◽  
Yonghai Cao ◽  
Feng Peng ◽  
Yonggang Cao ◽  
...  

F and N co-doped magnetic nanocarbons as adsorbents for environmental remediation have been demonstrated for the first time with high efficiency.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 546
Author(s):  
Jie Pan ◽  
Ni-Na Wang ◽  
Xue-Jing Yin ◽  
Xiao-Ling Liang ◽  
Zhi-Peng Wang

Tannase plays a crucial role in many fields, such as the pharmaceutical industry, beverage processing, and brewing. Although many tannases derived from bacteria and fungi have been thoroughly studied, those with good pH stabilities are still less reported. In this work, a mangrove-derived yeast strain Rhodosporidium diobovatum Q95, capable of efficiently degrading tannin, was screened to induce tannase, which exhibited an activity of up to 26.4 U/mL after 48 h cultivation in the presence of 15 g/L tannic acid. The tannase coding gene TANRD was cloned and expressed in Yarrowia lipolytica. The activity of recombinant tannase (named TanRd) was as high as 27.3 U/mL. TanRd was purified by chromatography and analysed by SDS-PAGE, showing a molecular weight of 75.1 kDa. The specific activity of TanRd towards tannic acid was 676.4 U/mg. Its highest activity was obtained at 40 °C, with more than 70% of the activity observed at 25–60 °C. Furthermore, it possessed at least 60% of the activity in a broad pH range of 2.5–6.5. Notably, TanRd was excellently stable at a pH range from 3.0 to 8.0; over 65% of its maximum activity remained after incubation. Besides, the broad substrate specificity of TanRd to esters of gallic acid has attracted wide attention. In view of the above, tannase resources were developed from mangrove-derived yeasts for the first time in this study. This tannase can become a promising material in tannin biodegradation and gallic acid production.


2014 ◽  
Vol 955-959 ◽  
pp. 455-458
Author(s):  
Lin Zhou ◽  
Zi Xiong Zhou ◽  
Shuang Zhu

Catechol 2,3-dioxygenase (C23O), the key enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway has been purified to homogeneity by one-step chromatography from bacterial strain Bacillus cereus ZL1. The culture condition was optimized according to the analysis of the biomass and C23O activity, and the separation process was monitored by SDS-PAGE method. The molecular weight of the purified C23O was 37±3KDa and the active enzyme was eluted by potassium phosphate buffer with 400 mmol NaCL using linear gradient mode on DEAE-Sepharose Fast Flow.


2001 ◽  
Vol 94 (6) ◽  
pp. 1026-1033 ◽  
Author(s):  
Eric P. Greenblatt ◽  
Xin Meng

Background The mechanism of volatile anesthetic (VA) action is unknown. Inhibitory receptors for the neurotransmitters gamma-aminobutyric acid (GABA) or glycine are typically positively modulated by VAs and may be important targets for their action. The existence of a GABA receptor subtype (p), which is uniquely inhibited by VAs, suggested a chimeric receptor approach to identify portions of these proteins that may be necessary for anesthetic effects. Methods A silent mutation resulting in the addition of a unique restriction enzyme recognition site was introduced in GABA receptor type A alpha2, glycine alpha1, and p subunit cDNAs. Chimeras were constructed by rejoining restriction digest fragments and were expressed in Xenopus oocytes. Modulation of submaximal agonist-evoked peak currents by the VAs chloroform, enflurane, halothane, or isoflurane was measured using two-electrode voltage clamp. Results Four chimeras were constructed and designated glyrho, rhogly, alpha2rho, and rhoalpha2. Glyrho formed glycine-gated receptors with currents that were enhanced by chloroform or halothane but were inhibited by enflurane or isoflurane. Chimeras rhogly and rhoalpha2 each formed GABA-gated receptors with currents that were inhibited by chloroform or halothane but enhanced by enflurane or isoflurane. Conclusions These data show, for the first time, functional divergence of VA action on a single protein target. The VAs in this study fall into two distinct groups with respect to their effects on these receptors. This grouping parallels the chemistry of these compounds. Our results support the involvement of multiple protein domains in the mechanism of VA modulation of GABA and glycine receptors.


2016 ◽  
Vol 4 (47) ◽  
pp. 18598-18606 ◽  
Author(s):  
Zidong Li ◽  
Tong Zhang ◽  
Yue Xin ◽  
Xiaoli Zhao ◽  
Dalei Yang ◽  
...  

The synergistic effect of fluorination and regio-regularity is proposed for the first time to realize the long-term thermal stability of polymer solar cells.


2021 ◽  
Vol 7 (2) ◽  
pp. 123-126
Author(s):  
Sasan Zaeri ◽  
Zohre Aghaei ◽  
Navid Reza Mashayekhi ◽  
Ali Salemi ◽  
Ramin Seyedian

Objective: Snake envenomation is common in tropical and subtropical countries of the Middle East areas including Iran. Cerastes cerastes gasperettii is a dangerous snake living in southwestern provinces of Iran. It causes massive edema at the bite site and coagulopathy leading to death if untreated. Methods: The purpose of this preliminary animal study was to evaluate the toxicity and proteomic of this venom for the first time in Iran. Moreover, the hemodynamic changes with intravenous injection of the venom were assessed and inotropic in addition to arrhythmogenic properties of this venom were investigated. Results: The estimated amount of the LD50 with intraperitoneal injection was slightly less than the similar experiment in Saudi Arabia (1.32 mg/kg versus 978 µg/kg body weight). There were 8 distinct protein bands between 12 and 66 kDa in SDS-PAGE analysis that were different with Moroccan experiment due to inter and intra species variation. Inotropic potencies were not significant since the lethal dose with intravenous injection was much lower than the Arabian experiment in guinea pigs (2.4 mg/kg versus 0.8 mg/kg). Conclusion: According to the low hemodynamic changes induced with the venom, it seems that coagulopathy and edema are the most dangerous effects of this rare snake in Iran.


Author(s):  
Shihua Li ◽  
Kai Yu ◽  
Guandi Wu ◽  
Qingfeng Zhang ◽  
Panqin Wang ◽  
...  

Thiol groups on cysteines can undergo multiple post-translational modifications (PTMs), acting as a molecular switch to maintain redox homeostasis and regulating a series of cell signaling transductions. Identification of sophistical protein cysteine modifications is crucial for dissecting its underlying regulatory mechanism. Instead of a time-consuming and labor-intensive experimental method, various computational methods have attracted intense research interest due to their convenience and low cost. Here, we developed the first comprehensive deep learning based tool pCysMod for multiple protein cysteine modification prediction, including S-nitrosylation, S-palmitoylation, S-sulfenylation, S-sulfhydration, and S-sulfinylation. Experimentally verified cysteine sites curated from literature and sites collected by other databases and predicting tools were integrated as benchmark dataset. Several protein sequence features were extracted and united into a deep learning model, and the hyperparameters were optimized by particle swarm optimization algorithms. Cross-validations indicated our model showed excellent robustness and outperformed existing tools, which was able to achieve an average AUC of 0.793, 0.807, 0.796, 0.793, and 0.876 for S-nitrosylation, S-palmitoylation, S-sulfenylation, S-sulfhydration, and S-sulfinylation, demonstrating pCysMod was stable and suitable for protein cysteine modification prediction. Besides, we constructed a comprehensive protein cysteine modification prediction web server based on this model to benefit the researches finding the potential modification sites of their interested proteins, which could be accessed at http://pcysmod.omicsbio.info. This work will undoubtedly greatly promote the study of protein cysteine modification and contribute to clarifying the biological regulation mechanisms of cysteine modification within and among the cells.


Sign in / Sign up

Export Citation Format

Share Document