scholarly journals Reviewing Bioinspired Technologies for Future Trends: A Complex Systems Point of View

2021 ◽  
Vol 9 ◽  
Author(s):  
Paolo Arena ◽  
Maide Bucolo ◽  
Arturo Buscarino ◽  
Luigi Fortuna ◽  
Mattia Frasca

In this contribution, the main guidelines that, in the opinion of the authors, will address bioinspired technologies in the next future are discussed. The topics are related to some specific subjects. The presented perspectives could be useful to remark how bioinspired technologies can be applied to solve every day problems in a low cost and sustainable way. Moreover, all the considerations reported hallmark the need of changing the paradigm to design innovative bionspired systems. Efficient and alternative bioinspired systems cannot be designed by only looking at macroscopic scale as observed in nature. The efforts of this paper are oriented towards providing a wide perspective on bioinspired technologies as complex systems where nonlinear phenomena are fundamental elements.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2254
Author(s):  
Francisco Javier González-Cañete ◽  
Eduardo Casilari

Over the last few years, the use of smartwatches in automatic Fall Detection Systems (FDSs) has aroused great interest in the research of new wearable telemonitoring systems for the elderly. In contrast with other approaches to the problem of fall detection, smartwatch-based FDSs can benefit from the widespread acceptance, ergonomics, low cost, networking interfaces, and sensors that these devices provide. However, the scientific literature has shown that, due to the freedom of movement of the arms, the wrist is usually not the most appropriate position to unambiguously characterize the dynamics of the human body during falls, as many conventional activities of daily living that involve a vigorous motion of the hands may be easily misinterpreted as falls. As also stated by the literature, sensor-fusion and multi-point measurements are required to define a robust and reliable method for a wearable FDS. Thus, to avoid false alarms, it may be necessary to combine the analysis of the signals captured by the smartwatch with those collected by some other low-power sensor placed at a point closer to the body’s center of gravity (e.g., on the waist). Under this architecture of Body Area Network (BAN), these external sensing nodes must be wirelessly connected to the smartwatch to transmit their measurements. Nonetheless, the deployment of this networking solution, in which the smartwatch is in charge of processing the sensed data and generating the alarm in case of detecting a fall, may severely impact on the performance of the wearable. Unlike many other works (which often neglect the operational aspects of real fall detectors), this paper analyzes the actual feasibility of putting into effect a BAN intended for fall detection on present commercial smartwatches. In particular, the study is focused on evaluating the reduction of the battery life may cause in the watch that works as the core of the BAN. To this end, we thoroughly assess the energy drain in a prototype of an FDS consisting of a smartwatch and several external Bluetooth-enabled sensing units. In order to identify those scenarios in which the use of the smartwatch could be viable from a practical point of view, the testbed is studied with diverse commercial devices and under different configurations of those elements that may significantly hamper the battery lifetime.


2015 ◽  
Vol 24 (4) ◽  
pp. 298-321 ◽  
Author(s):  
Ernesto de la Rubia ◽  
Antonio Diaz-Estrella

Virtual reality has become a promising field in recent decades, and its potential now seems clearer than ever. With the development of handheld devices and wireless technologies, interest in virtual reality is also increasing. Therefore, there is an accompanying interest in inertial sensors, which can provide such advantages as small size and low cost. Such sensors can also operate wirelessly and be used in an increasing number of interactive applications. An example related to virtual reality is the ability to move naturally through virtual environments. This is the objective of the real-walking navigation technique, for which a number of advantages have previously been reported in terms of presence, object searching, and collision, among other concerns. In this article, we address the use of foot-mounted inertial sensors to achieve real-walking navigation in a wireless virtual reality system. First, an overall description of the problem is presented. Then, specific difficulties are identified, and a corresponding technique is proposed to overcome each: tracking of foot movements; determination of the user’s position; percentage estimation of the gait cycle, including oscillating movements of the head; stabilization of the velocity of the point of view; and synchronization of head and body yaw angles. Finally, a preliminary evaluation of the system is conducted in which data and comments from participants were collected.


2000 ◽  
Author(s):  
M. P. Koster

Abstract The application of flexural joints in mechanisms has a number of advantages. Extreme repeatability of position is obtained because of the absence of backlash and friction. From a tribological point of view, no lubrication is needed and no wear exists. In many cases their application gives rise to a low cost assembly. Flexural elements have their particular drawbacks as well. Deflections are limited; only oscillating motions can be performed and work has to be done as a consequence of the elastic deflection. Flexural fatigue sets another limit to their application. The paper gives an overview of a design methodology that has been developed at the Philips Center for Industrial Technology by the author and his colleagues over the last several decades. Some aspects of this methodology are well known; other aspects are unique. The methodology is described in detail in a book by the author about design principles (Koster 1998). The methodology has been used to design hundreds of practical mechanisms incorporated in scientific instruments, manufacturing equipment and consumer goods. Many examples are given in (Koster 1998). Several interesting examples are given in this paper.


2021 ◽  
Vol 13 (4) ◽  
pp. 105-119
Author(s):  
Gang-Hoon Seo

Since Southwest Airlines' disruptive innovation was introduced, low-cost carriers (LCCs) have had a prominent impact on the aviation industry. Therefore, considerable attention has been paid to the LCC model. However, it is still not clear whether it is a successful disruptive innovation, or what factors and differentiation points for successful LCC service exist from the passengers' perspective. As this study's methodology, quantitative and qualitative content analyses are conducted using the word-of-mouth data of 1,854 passengers of 20 airlines. This study found that the LCC model is perceived as a successful disruptive innovation from the passengers' point of view. For successful LCC service, LC airlines should offer higher quality services than passengers' expectations using basic service elements. Also, good staff characteristics, leaving a professional impression, and providing good optional services could play a role as differentiation tools.


Author(s):  
C. Pezzica ◽  
A. Piemonte ◽  
C. Bleil de Souza ◽  
V. Cutini

<p><strong>Abstract.</strong> This paper identifies the application domain, context of use, processes and goals of low-cost street-level photogrammetry after urban disasters. The proposal seeks a synergy between top-down and bottom-up initiatives carried out by different actors during the humanitarian response phase in data scarce contexts. By focusing on the self-organisation capacities of local people, this paper suggests using collaborative photogrammetry to empower communities hit by disasters and foster their active participation in recovery and reconstruction planning. It shows that this task may prove technically challenging depending on the specifics of the collected imagery and develops a grounded framework to produce user-centred image acquisition guidelines and fit-for-purpose photogrammetric reconstruction workflows, useful in future post-disaster scenarios. To this end, it presents an in-depth analysis of a collaborative photographic mapping initiative undergone by a group of citizen-scientists after the 2016 Central Italy earthquake, followed by the explorative processing of some sample datasets. Specifically, the paper firstly presents a visual ethnographic study of the photographic material uploaded by participants from September 2016 to November 2018 in the two Italian municipalities of Arquata del Tronto and Norcia. Secondly, it illustrates from a technical point of view issues concerning the processing of crowdsourced data (e.g. image filtering, selection, quality, semantic content and 3D model scaling) and discusses the viability of using it to enrich the pool of geo-information available to stakeholders and decision-makers. Final considerations are discussed as part of a grounded framework for future guidelines tailored to multiple goals and data processing scenarios.</p>


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5843
Author(s):  
Rosaria Verduci ◽  
Antonio Agresti ◽  
Valentino Romano ◽  
Giovanna D’Angelo

The last decade has witnessed the advance of metal halide perovskites as a promising low-cost and efficient class of light harvesters used in solar cells (SCs). Remarkably, the efficiency of lab-scale perovskite solar cells (PSCs) reached a power conversion efficiency of 25.5% in just ~10 years of research, rivalling the current record of 26.1% for Si-based PVs. To further boost the performances of PSCs, the use of 2D materials (such as graphene, transition metal dichalcogenides and transition metal carbides, nitrides and carbonitrides) has been proposed, thanks to their remarkable optoelectronic properties (that can be tuned with proper chemical composition engineering) and chemical stability. In particular, 2D materials have been demonstrated as promising candidates for (i) accelerating hot carrier transfer across the interfaces between the perovskite and the charge extraction layers; (ii) improving the crystallization of the perovskite layers (when used as additives in the precursor solution); (iii) favoring electronic bands alignment through tuning of the work function. In this mini-review, we discuss the physical mechanisms underlying the increased efficiency of 2D material-based PSCs, focusing on the three aforementioned effects.


2016 ◽  
Vol 10 (4) ◽  
pp. 187-198 ◽  
Author(s):  
Orly Lahav ◽  
Nuha Chagab ◽  
Vadim Talis

Purpose The purpose of this paper is to examine a central need of students who are blind: the ability to access science curriculum content. Design/methodology/approach Agent-based modeling is a relatively new computational modeling paradigm that models complex dynamic systems. NetLogo is a widely used agent-based modeling language that enables exploration and construction of models of complex systems by programming and running the rules and behaviors. Sonification of variables and events in an agent-based NetLogo computer model of gas in a container is used to convey phenomena information. This study examined mainly two research topics: the scientific conceptual knowledge and systems reasoning that were learned as a result of interaction with the listen-to-complexity (L2C) environment as appeared in answers to the pre- and post-tests and the learning topics of kinetic molecular theory of gas in chemistry that was learned as a result of interaction with the L2C environment. The case study research focused on A., a woman who is adventitiously blind, for eight sessions. Findings The participant successfully completed all curricular assignments; her scientific conceptual knowledge and systems reasoning became more specific and aligned with scientific knowledge. Practical implications A practical implication of further studies is that they are likely to have an impact on the accessibility of learning materials, especially in science education for students who are blind, as equal access to low-cost learning environments that are equivalent to those used by sighted users would support their inclusion in the K-12 academic curriculum. Originality/value The innovative and low-cost learning system that is used in this research is based on transmittal of visual information of dynamic and complex systems, providing perceptual compensation by harnessing auditory feedback. For the first time the L2C system is based on sound that represents a dynamic rather than a static array. In this study, the authors explore how a combination of several auditory representations may affect cognitive learning ability.


Author(s):  
Siddharth M. Nair ◽  
Varsha Ramesh ◽  
Amit Kumar Tyagi

The major issues and challenges in blockchain over internet of things are security, privacy, and usability. Confidentiality, authentication, and control are the challenges faced in security issue. Hence, this chapter will discuss the challenges and opportunities from the prospective of security and privacy of data in blockchain (with respect to security and privacy community point of view). Furthermore, the authors will provide some future trends that blockchain technology may adapt in the near future (in brief).


Author(s):  
Josephine M.S. ◽  
Lakshmanan L. ◽  
Resmi R. Nair ◽  
Visu P. ◽  
Ganesan R. ◽  
...  

Purpose The purpose fo this paper is to Monitor and sense the sysmptoms of COVID-19 as a preliminary measure using electronic wearable devices. This variability is sensed by electrocardiograms observed from a multi-parameter monitor and electronic wearable. This field of interest has evolved into a wide area of investigation with today’s advancement in technology of internet of things for immediate sensing and processing information about profound pain. A window span is estimated and reports of profound pain data are used for monitoring heart rate variability (HRV). A median heart rate is considered for comparisons with a diverse range of variable information obtained from sensors and monitors. Observations from healthy patients are introduced to identify how root mean square of difference between inter beat intervals, standard deviation of inter-beat intervals and mean heart rate value are normalized in HRV analysis. Design/methodology/approach The function of a human heart relates back to the autonomic nervous system, which organizes and maintains a healthy maneuver of inter connected organs. HRV has to be determined for analyzing and reporting the status of health, fitness, readiness and possibilities for recovery, and thus, a metric for deeming the presence of COVID-19. Identifying the variations in heart rate, monitoring and assessing profound pain levels are potential lives saving measures in medical industries. Findings Experiments are proposed to be done in electrical and thermal point of view and this composition will deliver profound pain levels ranging from 0 to 10. Real time detection of pain levels will assist the care takers to facilitate people in an aging population for a painless lifestyle. Originality/value The presented research has documented the stages of COVID-19, symptoms and a mechanism to monitor the progress of the disease through better parameters. Risk factors of the disease are carefully analyzed, compared with test results, and thus, concluded that considering the HRV can study better in the presence of ignorance and negligence. The same mechanism can be implemented along with a global positioning system (GPS) system to track the movement of patients during isolation periods. Despite the stringent control measurements for locking down all industries, the rate of affected people is still on the rise. To counter this, people have to be educated about the deadly effects of COVID-19 and foolproof systems should be in place to control the transmission from affected people to new people. Medications to suppress temperatures, will not be sufficient to alter the heart rate variations, and thus, the proposed mechanism implemented the same. The proposed study can be extended to be associated with Government mobile apps for regular and a consortium of single tracking. Measures can be taken to distribute the low-cost proposal to people for real time tracking and regular updates about high and medium risk patients.


Sign in / Sign up

Export Citation Format

Share Document