scholarly journals Skyrmion-Antiskyrmion Racetrack Memory in Rank-One DMI Materials

2021 ◽  
Vol 9 ◽  
Author(s):  
Markus Hoffmann ◽  
Gideon P. Müller ◽  
Christof Melcher ◽  
Stefan Blügel

Chiral magnetic skyrmions, localized and topologically protected vortex-like magnetic textures that can be found in chiral magnets, are currently under intense study as an entity for information storage and processing. A recent study showed that so-called rank-one materials can host both skyrmions and antiskyrmions at the same energy. In such systems the Dzyaloshinskii-Moriya interaction, in general a tensorial quantity, is reduced to only one non-zero component. The presence of both skyrmions and antiskyrmions allows for the investigation of the possible interplay between them. Here, we investigate the stability and interaction of skyrmions and antiskyrmions as well as their transport properties subject to spin-orbit torque for a model system described by an atomistic spin-lattice Hamiltonian employing the simulation software Spirit. The spin-orbit torque driven spin-dynamics described by the Landau-Lifshitz-Gilbert equation is compared to the effective one of the Thiele equation. We demonstrate that, even though skyrmions and antiskyrmions can be seen as antiparticles, a rather dense arrangement of both along a memory track is possible, enabling their use as representations of the binary data bits “0” and “1” in a memory device.

2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2016 ◽  
Vol 40 ◽  
pp. 1660098
Author(s):  
K. Heinemann ◽  
D. P. Barber ◽  
J. A. Ellison ◽  
M. Vogt

We give an informal summary of ongoing work which uses tools distilled from the theory of fibre bundles to classify and connect invariant fields associated with spin motion in storage rings. We mention four major theorems. One ties invariant fields with the notion of normal form, the second allows comparison of different invariant fields and the two others tie the existence of invariant fields to the existence of certain invariant sets. We explain how the theorems apply to the spin dynamics of spin-[Formula: see text] and spin-[Formula: see text] particles. Our approach elegantly unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics and suggests an avenue for addressing the question of the existence of the invariant spin field.


2004 ◽  
Vol 272-276 ◽  
pp. 1087-1088 ◽  
Author(s):  
E. Micotti ◽  
A. Lascialfari ◽  
A. Rigamonti ◽  
S. Aldrovandi ◽  
A. Caneschi ◽  
...  

1983 ◽  
Vol 72 (1-4) ◽  
pp. 171-175 ◽  
Author(s):  
H. Ohkura ◽  
K. Iwahana ◽  
K. Tara ◽  
M. Hirata ◽  
Y. Mori

Author(s):  
Anruo Zhong ◽  
Xiaoming Lan ◽  
Yangfan Hu ◽  
Biao Wang

Abstract Magnetic skyrmions are attracting much attention due to their nontrivial topology and high mobility to electric current. Nevertheless, suppression of the skyrmion Hall effect and maintaining high velocity of skyrmions with low energy cost are two major challenges concerning skyrmion-based spintronic devices. Here we show theoretically that in a nano-beam suffering appropriate bending moment, both Bloch-type and Néel-type skyrmions move with a vanishing Hall angle under a current density smaller than that required when the bending is absent. Moreover, bending alone can be used to move skyrmions, whose velocity is solved analytically from the Thiele equation. Generally speaking, inhomogeneous elastic fields affect the stability and dynamics of skyrmions, where the local stability is dominantly determined by the local bulk stress. These findings throw new light on how to drive skyrmions straightly with lower energy cost, which is vital for utilizing skyrmions as information carriers.


2020 ◽  
Author(s):  
Woo-Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny Rhim ◽  
...  

Abstract Dzyaloshinskii-Moriya interaction (DMI) is considered as one of the most important energy for specific chiral texture such as magnetic skyrmions. The key of generating DMI is absence of structural inversion symmetry and exchange energy with spin-orbit coupling. Therefore, a vast majority of researches about DMI is mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report that asymmetric band formation in an artificial superlattice arises from inversion symmetry breaking in stacking order of atomic layers, resulting in bulk DMI. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin-orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Such Rashba superlattices can be a new class of material design for spintronics applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guidobeth Sáez ◽  
Pablo Díaz ◽  
Eduardo Cisternas ◽  
Eugenio E. Vogel ◽  
Juan Escrig

AbstractA long piece of magnetic material shaped as a central cylindrical wire (diameter $$d=50$$ d = 50 nm) with two wider coaxial cylindrical portions (diameter $$D=90$$ D = 90 nm and thickness $$t=100$$ t = 100 nm) defines a bimodulated nanowire. Micromagnetism is invoked to study the equilibrium energy of the system under the variations of the positions of the modulations along the wire. The system can be thought of as composed of five independent elements (3 segments and 2 modulations) leading to $$2^5=32$$ 2 5 = 32 possible different magnetic configurations, which will be later simplified to 4. We investigate the stability of the configurations depending on the positions of the modulations. The relative chirality of the modulations has negligible contributions to the energy and they have no effect on the stability of the stored configuration. However, the modulations are extremely important in pinning the domain walls that lead to consider each segment as independent from the rest. A phase diagram reporting the stability of the inscribed magnetic configurations is produced. The stability of the system was then tested under the action of external magnetic fields and it was found that more than 50 mT are necessary to alter the inscribed information. The main purpose of this paper is to find whether a prototype like this can be complemented to be used as a magnetic key or to store information in the form of firmware. Present results indicate that both possibilities are feasible.


Sign in / Sign up

Export Citation Format

Share Document