scholarly journals Influence of Autocorrelated Rhythmic Auditory Stimulations on Parkinson’s Disease Gait Variability: Comparison With Other Auditory Rhythm Variabilities and Perspectives

2020 ◽  
Vol 11 ◽  
Author(s):  
Alexis Lheureux ◽  
Thibault Warlop ◽  
Charline Cambier ◽  
Baptiste Chemin ◽  
Gaëtan Stoquart ◽  
...  

Parkinson’s Disease patients suffer from gait impairments such as reduced gait speed, shortened step length, and deterioration of the temporal organization of stride duration variability (i.e., breakdown in Long-Range Autocorrelations). The aim of this study was to compare the effects on Parkinson’s Disease patients’ gait of three Rhythmic Auditory Stimulations (RAS), each structured with a different rhythm variability (isochronous, random, and autocorrelated). Nine Parkinson’s Disease patients performed four walking conditions of 10–15 min each: Control Condition (CC), Isochronous RAS (IRAS), Random RAS (RRAS), and Autocorrelated RAS (ARAS). Accelerometers were used to assess gait speed, cadence, step length, temporal organization (i.e., Long-Range Autocorrelations computation), and magnitude (i.e., coefficient of variation) of stride duration variability on 512 gait cycles. Long-Range Autocorrelations were assessed using the evenly spaced averaged Detrended Fluctuation Analysis (α-DFA exponent). Spatiotemporal gait parameters and coefficient of variation were not modified by the RAS. Long-Range Autocorrelations were present in all patients during CC and ARAS although all RAS conditions altered them. The α-DFA exponents were significantly lower during IRAS and RRAS than during CC, exhibiting anti-correlations during IRAS in seven patients. α-DFA during ARAS was the closest to the α-DFA during CC and within normative data of healthy subjects. In conclusion, Isochronous RAS modify patients’ Long-Range Autocorrelations and the use of Autocorrelated RAS allows to maintain an acceptable level of Long-Range Autocorrelations for Parkinson’s Disease patients’ gait.

2019 ◽  
Author(s):  
Madelon Wygand ◽  
Guneet Chawla ◽  
Nina Browner ◽  
Michael D Lewek

AbstractObjectiveTo determine the effect of different metronome cue frequencies on spatiotemporal gait parameters when walking overground compared to walking on a treadmill in people with Parkinson’s diseaseDesignRepeated-measures, within-subject designSettingResearch laboratoryParticipantsTwenty-one people with Parkinson’s disease (Hoehn & Yahr stage 1-3)InterventionsParticipants walked overground and on a treadmill with and without metronome cues of 85%, 100%, and 115% of their baseline cadence for one minute each.Main Outcome MeasuresGait speed, step length, and cadenceResultsAn interaction effect between cue frequency and walking environment revealed that participants took longer steps during the 85% condition on the treadmill only. When walking overground, metronome cues of 85% and 115% of baseline cadence yielded decreases and increases, respectively, in both cadence and gait speed with no concomitant change in step length.ConclusionsThese data suggest that people with PD are able to alter spatiotemporal gait parameters immediately when provided the appropriate metronome cue and walking environment. We propose to target shortened step lengths by stepping to the beat of slow frequency auditory cues while walking on a treadmill, whereas the use of fast frequency cues during overground walking can facilitate faster walking speeds.


Author(s):  
Júlia Ávila de Oliveira ◽  
Paulo Rodrigo Bazán ◽  
Claudia Eunice Neves Oliveira ◽  
Renata Castro Treza ◽  
Sandy Mikie Hondo ◽  
...  

Author(s):  
Aušra Stuopelytė ◽  
Rasa Šakalienė

Parkinson’s disease is a chronic progressive neurological disorder that can impact function to a variable degree. Changes in gait parameters are the most common signs of Parkinson’s disease. Patients with Parkinson’s disease walk with a reduced step length, step time, walking velocity and walking cadence, increased stride cycle time, coefficient of variation of the step amplitude and step time and increased risk to fall. So, various gait training methods are applied. The effect of rhythmic auditory stimulation on gait in Parkinson’s disease patients is analysed. We can use various kinds of music, metronome, scansion and clapping as a rhythmic auditory stimulation.One of gait training methods in Parkinson’s disease patients is treadmill training. There are attempts to combine treadmill training with transcranial magnetic stimulation and virtual reality. We can use Nordic walking method and because walking technique requires straight posture, trunk rotation, bigger step and heel stride. More often robot–assisted gait training is used in patients with Parkinson’s disease gait training. The effect of dual–tasking and walking with music methods for gait and balance training in patients with Parkinson’s disease is also analysed. This method requires participants to perform primary and secondary tasks at the same time. The secondary task can be cognitive or motor. Dual–tasking is widely analysed because opinions about applying this method are very controversial. Walking with music method is more often analysed in scientific literature. This method could not be compared to rhythmic auditory stimulation method because the latter requires precise walking to rhythm and walking with music method is oriented to emotional component (music is chosen according patients’ music taste). As these methods are applied, we can see an increase in chosen walking and maximal walking velocities, step length and time, distance covered, and decrease in the coefficient of variation of the step time and turning time.Keywords: Gait impairments, walking velocity, rhythmic auditory stimulation.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9463
Author(s):  
Byungjoo Noh ◽  
Changhong Youm ◽  
Myeounggon Lee ◽  
Sang-Myung Cheon

Background No previous study has examined the age-dependent characteristics of gait in individuals between 50 and 79 years simultaneously in healthy individuals and individuals with Parkinson’s disease (PD) over continuous gait cycles. This study aimed to investigate age-related differences in gait characteristics on individuals age ranged 50–79 years, including individuals with PD, during a 1-minute treadmill walking session. Additionally, we aimed to investigate the differences associated with spatiotemporal gait parameters and PD compared in age-matched individuals. Methods This study included 26 individuals with PD and 90 participants age ranged 50–79 years. The treadmill walking test at a self-preferred speed was performed for 1 min. The embedded inertial measurement unit sensor in the left and right outsoles-based system was used to collect gait characteristics based on tri-axial acceleration and tri-axial angular velocities. Results Participants aged >60 years had a decreased gait speed and shortened stride and step, which may demonstrate a distinct shift in aging (all p < 0.005). Individuals with PD showed more of a decrease in variables with a loss of consistency, including gait asymmetry (GA), phase coordination index (PCI) and coefficient of variation (CV) of all variables, than age-matched individuals (all p < 0.001). Gait speed, stride and step length, stance phase, variability, GA and PCI were the variables that highly depended on age and PD. Discussion Older adults could be considered those older than 60 years of age when gait alterations begin, such as a decreased gait speed as well as shortened stride and step length. On the other hand, a loss of consistency in spatiotemporal parameters and a higher GA and PCI could be used to identify individuals with PD. Thus, the CV of all spatiotemporal parameters, GA and PCI during walking could play an important role and be useful in identifying individuals with PD. Conclusion This study provided the notable aging pattern characteristics of gait in individuals >50 years, including individuals with PD. Increasing age after 60 years is associated with deterioration in spatiotemporal parameters of gait during continuous 1-minute treadmill walking. Additionally, GA, PCI and the CV of all variables could be used to identify PD which would be placed after 70 years of age. It may be useful to determine the decline of gait performance in general and among individuals with PD.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Staci M. Shearin ◽  
Ann Medley ◽  
Elaine Trudelle-Jackson ◽  
Chad Swank ◽  
Ross Querry

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2292
Author(s):  
Julius Welzel ◽  
David Wendtland ◽  
Elke Warmerdam ◽  
Robbin Romijnders ◽  
Morad Elshehabi ◽  
...  

Current research on Parkinson’s disease (PD) is increasingly concerned with the identification of objective and specific markers to make reliable statements about the effect of therapy and disease progression. Parameters from inertial measurement units (IMUs) are objective and accurate, and thus an interesting option to be included in the regular assessment of these patients. In this study, 68 patients with PD (PwP) in Hoehn and Yahr (H&Y) stages 1–4 were assessed with two gait tasks—20 m straight walk and circular walk—using IMUs. In an ANCOVA model, we found a significant and large effect of the H&Y scores on step length in both tasks, and only a minor effect on step time. This study provides evidence that from the two potentially most important gait parameters currently accessible with wearable technology under supervised assessment strategies, step length changes substantially over the course of PD, while step time shows surprisingly little change in the progression of PD. These results show the importance of carefully evaluating quantitative gait parameters to make assumptions about disease progression, and the potential of the granular evaluation of symptoms such as gait deficits when monitoring chronic progressive diseases such as PD.


2016 ◽  
Vol 48 (10) ◽  
pp. 865-871 ◽  
Author(s):  
T Warlop ◽  
C Detrembleur ◽  
B Bollens ◽  
G Stoquart ◽  
F Crevecoeur ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 231-231
Author(s):  
Jeffrey Hausdorff ◽  
Moriya Cohen ◽  
Natalie Ganz ◽  
Yitchak Green ◽  
Inbal Badichi ◽  
...  

Abstract Multidisciplinary interventions can improve gait and balance in patients with Parkinson’s disease (PD). However, it is not yet known if these interventions also positively impact the quality of daily-living walking. We, therefore, examined the effects of a multidisciplinary, intensive out-patient rehabilitation program (MIOR) as delivered by the rehabilitation center of EZRA–LEMARPE organization on gait and balance as measured in the clinic and on every-day walking, as measured during 1-week of continuous measurement. 46 PD patients (age: 70.05±7.71; gender: 31.3% women; disease duration: 8.85±6.27 yrs) were evaluated before and after participating in 8-weeks of physical, occupational, and hydro-therapy, boxing, and dance (3 days/week; 5 hrs/day). After the intervention, clinical measures of balance (MiniBest Test of Balance delta: 1.82±3.30 points, p=0.001), mobility (TUG delta: -1.78±6.15sec; p=0.001), and usual-walking speed (delta 19±16cm/s; p&lt;0.001) improved. Daily-living step counts and daily-living gait quality did not change (p&gt;0.5). In exploratory analyses, subjects were categorized as responders (Rs) and non-responders (NRs) based on changes in their daily-living walking gait speed. Rs increased their daily-living gait speed (delta: 10±14cm/s; p&lt;0.001); NRs did not. Rs (n=21) also improved their daily-living gait quality measures (e.g. stride regularity, step length, stride time variability). At baseline, disease severity (MDS-UPDRSIII) was lower (p=0.02) in Rs (25.33±11.47), compared to the NRs (34.38±14.27). These results demonstrate that improvements in the clinic do not necessarily transfer to improvements in daily-living gait. Further, in select patients, MIOR can ameliorate daily-living walking quality, potentially reducing the risk of falls and other adverse outcomes associated with impaired mobility.


Author(s):  
P. Y. Diachenko ◽  
I. I. Leta ◽  
G. S. Moskovko

Objective — to identify the most significant markers of gait that indicate a decrease in cognitive function based on investigation of the corelation of cognitive impairment, gait parameters and atrophy of brain structures in groups of patients with Parkinson’s disease and the «normally aging population». Methods and subjects. 66 subjects were examined: 30 patients with Parkinson’s disease (mean age 54.9 ± 5.9, 50 % men) and 33 without neurological pathology (mean age 52.7 ± 7.6, 66 % men). All of them underwent neurological examination, assessment of temporal and spatial gait parameters using the GaitRite system, grading of brain atrophy using a comprehensive visual rating scale of MRI scans and assessment of cognitive status using the Montreal Cognitive Assessment Scale. Results. Cognitive performance was significantly lower in the subgroup of patients with Parkinson’s disease compared to the subgroup of «normally aging population». The gait profile of patients with Parkinson’s disease significantly differed from the gait profile of individuals from the «normal aging» subgroup by slower gait velocity, shorter step length and stride length for both limbs. The gait parameters, which showed a strong correlation with cognitive tests, differed in the subgroups, but gait velocity, stride length and step length for both extremities were common among them. These common gait parameters showed a strong direct correlation with brain atrophy in the subgroup of patients with Parkinson’s disease, but only velocity correlated with atrophy in the subgroup of «normal aging» among all of them. It was determined by the method of multiple regression analysis that it was precisely the atrophy of the brain that turned out to be the most influential factor in the decrease in cognitive function in the general group and subgroups. Conclusions. The gait profile in Parkinson’s disease subgroup is characterized by lower velocity, shorter step length, stride length for both limbs and significantly differs from the subgroup of «normal aging». These changes are a consequence of the influence of the disease on the motor sphere. Velocity showed a strong correlation in both subgroups not only with cognitive abilities, but also with cerebral atrophy. This confirms the hypothesis about the possibility of using gait velocity as a universal sensitive marker for current and longitudinal assessment of cognitive function, especially in clinical practice.  


2019 ◽  
Author(s):  
Guneet Chawla ◽  
Madelon Wygand ◽  
Nina Browner ◽  
Michael D Lewek

AbstractBackgroundParkinson’s disease (PD) is marked by a loss of motor automaticity, resulting in decreased control of step length during gait. Rhythmic auditory cues (metronomes or music) may enhance automaticity by adjusting cadence. Both metronomes and music may offer distinct advantages, but prior attempts at quantifying their influence on spatiotemporal aspects of gait have been confounded by altered gait speeds from overground walking. We hypothesized that when gait speed is fixed, individuals with PD would experience difficulty in modifying cadence due to the concomitant requirement to alter step length, with greater changes noted with metronomes compared to music cues.Research QuestionCan a metronome or music promote spatiotemporal adjustments when decoupled from changes in gait speed in individuals with PD?Methods21 participants with PD were instructed to time their steps to a metronome and music cues (at 85%, 100%, and 115% of overground cadence) during treadmill walking. We calculated cadence, cadence accuracy, and step length during each cue condition and an uncued control condition. We compared the various cue frequencies and auditory modalities.ResultsAt fixed gait speeds, participants were able to increase and decrease cadence in response to auditory cues. Music and metronome cues produced comparable results in cadence manipulation with greater cadence errors noted at slower intended frequencies. Nevertheless, the induced cadence changes created a concomitant alteration in step length, with music and metronomes producing comparable changes. Notably, longer step lengths were induced with both music and metronome during slow frequency cueing.SignificanceThis important change conflicts with conventional prescriptive approaches, which advocate for faster cue frequencies, if applied on a treadmill. The music and metronome cues produced comparable changes to gait, suggesting that either cue may be effective at overcoming the shortened step lengths during treadmill walking if slower frequencies are used.


Sign in / Sign up

Export Citation Format

Share Document