scholarly journals The Effects of Metronome Frequency Differentially Affects Gait on a Treadmill and Overground in People with Parkinson’s Disease

2019 ◽  
Author(s):  
Madelon Wygand ◽  
Guneet Chawla ◽  
Nina Browner ◽  
Michael D Lewek

AbstractObjectiveTo determine the effect of different metronome cue frequencies on spatiotemporal gait parameters when walking overground compared to walking on a treadmill in people with Parkinson’s diseaseDesignRepeated-measures, within-subject designSettingResearch laboratoryParticipantsTwenty-one people with Parkinson’s disease (Hoehn & Yahr stage 1-3)InterventionsParticipants walked overground and on a treadmill with and without metronome cues of 85%, 100%, and 115% of their baseline cadence for one minute each.Main Outcome MeasuresGait speed, step length, and cadenceResultsAn interaction effect between cue frequency and walking environment revealed that participants took longer steps during the 85% condition on the treadmill only. When walking overground, metronome cues of 85% and 115% of baseline cadence yielded decreases and increases, respectively, in both cadence and gait speed with no concomitant change in step length.ConclusionsThese data suggest that people with PD are able to alter spatiotemporal gait parameters immediately when provided the appropriate metronome cue and walking environment. We propose to target shortened step lengths by stepping to the beat of slow frequency auditory cues while walking on a treadmill, whereas the use of fast frequency cues during overground walking can facilitate faster walking speeds.

2020 ◽  
Vol 11 ◽  
Author(s):  
Alexis Lheureux ◽  
Thibault Warlop ◽  
Charline Cambier ◽  
Baptiste Chemin ◽  
Gaëtan Stoquart ◽  
...  

Parkinson’s Disease patients suffer from gait impairments such as reduced gait speed, shortened step length, and deterioration of the temporal organization of stride duration variability (i.e., breakdown in Long-Range Autocorrelations). The aim of this study was to compare the effects on Parkinson’s Disease patients’ gait of three Rhythmic Auditory Stimulations (RAS), each structured with a different rhythm variability (isochronous, random, and autocorrelated). Nine Parkinson’s Disease patients performed four walking conditions of 10–15 min each: Control Condition (CC), Isochronous RAS (IRAS), Random RAS (RRAS), and Autocorrelated RAS (ARAS). Accelerometers were used to assess gait speed, cadence, step length, temporal organization (i.e., Long-Range Autocorrelations computation), and magnitude (i.e., coefficient of variation) of stride duration variability on 512 gait cycles. Long-Range Autocorrelations were assessed using the evenly spaced averaged Detrended Fluctuation Analysis (α-DFA exponent). Spatiotemporal gait parameters and coefficient of variation were not modified by the RAS. Long-Range Autocorrelations were present in all patients during CC and ARAS although all RAS conditions altered them. The α-DFA exponents were significantly lower during IRAS and RRAS than during CC, exhibiting anti-correlations during IRAS in seven patients. α-DFA during ARAS was the closest to the α-DFA during CC and within normative data of healthy subjects. In conclusion, Isochronous RAS modify patients’ Long-Range Autocorrelations and the use of Autocorrelated RAS allows to maintain an acceptable level of Long-Range Autocorrelations for Parkinson’s Disease patients’ gait.


Author(s):  
Júlia Ávila de Oliveira ◽  
Paulo Rodrigo Bazán ◽  
Claudia Eunice Neves Oliveira ◽  
Renata Castro Treza ◽  
Sandy Mikie Hondo ◽  
...  

Author(s):  
Aušra Stuopelytė ◽  
Rasa Šakalienė

Parkinson’s disease is a chronic progressive neurological disorder that can impact function to a variable degree. Changes in gait parameters are the most common signs of Parkinson’s disease. Patients with Parkinson’s disease walk with a reduced step length, step time, walking velocity and walking cadence, increased stride cycle time, coefficient of variation of the step amplitude and step time and increased risk to fall. So, various gait training methods are applied. The effect of rhythmic auditory stimulation on gait in Parkinson’s disease patients is analysed. We can use various kinds of music, metronome, scansion and clapping as a rhythmic auditory stimulation.One of gait training methods in Parkinson’s disease patients is treadmill training. There are attempts to combine treadmill training with transcranial magnetic stimulation and virtual reality. We can use Nordic walking method and because walking technique requires straight posture, trunk rotation, bigger step and heel stride. More often robot–assisted gait training is used in patients with Parkinson’s disease gait training. The effect of dual–tasking and walking with music methods for gait and balance training in patients with Parkinson’s disease is also analysed. This method requires participants to perform primary and secondary tasks at the same time. The secondary task can be cognitive or motor. Dual–tasking is widely analysed because opinions about applying this method are very controversial. Walking with music method is more often analysed in scientific literature. This method could not be compared to rhythmic auditory stimulation method because the latter requires precise walking to rhythm and walking with music method is oriented to emotional component (music is chosen according patients’ music taste). As these methods are applied, we can see an increase in chosen walking and maximal walking velocities, step length and time, distance covered, and decrease in the coefficient of variation of the step time and turning time.Keywords: Gait impairments, walking velocity, rhythmic auditory stimulation.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9463
Author(s):  
Byungjoo Noh ◽  
Changhong Youm ◽  
Myeounggon Lee ◽  
Sang-Myung Cheon

Background No previous study has examined the age-dependent characteristics of gait in individuals between 50 and 79 years simultaneously in healthy individuals and individuals with Parkinson’s disease (PD) over continuous gait cycles. This study aimed to investigate age-related differences in gait characteristics on individuals age ranged 50–79 years, including individuals with PD, during a 1-minute treadmill walking session. Additionally, we aimed to investigate the differences associated with spatiotemporal gait parameters and PD compared in age-matched individuals. Methods This study included 26 individuals with PD and 90 participants age ranged 50–79 years. The treadmill walking test at a self-preferred speed was performed for 1 min. The embedded inertial measurement unit sensor in the left and right outsoles-based system was used to collect gait characteristics based on tri-axial acceleration and tri-axial angular velocities. Results Participants aged >60 years had a decreased gait speed and shortened stride and step, which may demonstrate a distinct shift in aging (all p < 0.005). Individuals with PD showed more of a decrease in variables with a loss of consistency, including gait asymmetry (GA), phase coordination index (PCI) and coefficient of variation (CV) of all variables, than age-matched individuals (all p < 0.001). Gait speed, stride and step length, stance phase, variability, GA and PCI were the variables that highly depended on age and PD. Discussion Older adults could be considered those older than 60 years of age when gait alterations begin, such as a decreased gait speed as well as shortened stride and step length. On the other hand, a loss of consistency in spatiotemporal parameters and a higher GA and PCI could be used to identify individuals with PD. Thus, the CV of all spatiotemporal parameters, GA and PCI during walking could play an important role and be useful in identifying individuals with PD. Conclusion This study provided the notable aging pattern characteristics of gait in individuals >50 years, including individuals with PD. Increasing age after 60 years is associated with deterioration in spatiotemporal parameters of gait during continuous 1-minute treadmill walking. Additionally, GA, PCI and the CV of all variables could be used to identify PD which would be placed after 70 years of age. It may be useful to determine the decline of gait performance in general and among individuals with PD.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Staci M. Shearin ◽  
Ann Medley ◽  
Elaine Trudelle-Jackson ◽  
Chad Swank ◽  
Ross Querry

Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1481
Author(s):  
Ana Paula J. Zanardi ◽  
Flávia G. Martinez ◽  
Edson S. da Silva ◽  
Marcela Z. Casal ◽  
Valéria F. Martins ◽  
...  

Individuals with Parkinson’s disease (PD) have gait asymmetries, and exercise therapy may reduce the differences between more and less affected limbs. The Nordic walking (NW) training may contribute to reducing the asymmetry in upper and lower limb movements in people with PD. We compared the effects of 11 weeks of NW aerobic training on asymmetrical variables of gait in subjects with mild PD. Fourteen subjects with idiopathic PD, age: 66.8 ± 9.6 years, and Hoehn and Yard stage of 1.5 points were enrolled. The kinematic analysis was performed pre and post-intervention. Data were collected at two randomized walking speeds (0.28 m·s−1 and 0.83 m·s−1) during five minutes on the treadmill without poles. The more affected and less affected body side symmetries (threshold at 5% between sides) of angular kinematics and spatiotemporal gait parameters were calculated. We used Generalized Estimating Equations with Bonferroni post hoc (α = 0.05). Maximal flexion of the knee (p = 0.007) and maximal abduction of the hip (p = 0.041) were asymmetrical pre and became symmetrical post NW intervention. The differences occurred in the knee was less affected and the hip was more affected. We concluded that 11 weeks of NW training promoted similarities in gait parameters and improved knee and hip angular parameters for PD subjects.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2292
Author(s):  
Julius Welzel ◽  
David Wendtland ◽  
Elke Warmerdam ◽  
Robbin Romijnders ◽  
Morad Elshehabi ◽  
...  

Current research on Parkinson’s disease (PD) is increasingly concerned with the identification of objective and specific markers to make reliable statements about the effect of therapy and disease progression. Parameters from inertial measurement units (IMUs) are objective and accurate, and thus an interesting option to be included in the regular assessment of these patients. In this study, 68 patients with PD (PwP) in Hoehn and Yahr (H&Y) stages 1–4 were assessed with two gait tasks—20 m straight walk and circular walk—using IMUs. In an ANCOVA model, we found a significant and large effect of the H&Y scores on step length in both tasks, and only a minor effect on step time. This study provides evidence that from the two potentially most important gait parameters currently accessible with wearable technology under supervised assessment strategies, step length changes substantially over the course of PD, while step time shows surprisingly little change in the progression of PD. These results show the importance of carefully evaluating quantitative gait parameters to make assumptions about disease progression, and the potential of the granular evaluation of symptoms such as gait deficits when monitoring chronic progressive diseases such as PD.


2021 ◽  
Vol 11 (4) ◽  
pp. 2073-2084
Author(s):  
Purnima Padmanabhan ◽  
Keerthana Sreekanth Rao ◽  
Anthony J. Gonzalez ◽  
Alexander Y. Pantelyat ◽  
Vikram S. Chib ◽  
...  

Background: Gait slowing is a common feature of Parkinson’s disease (PD). Many therapies aim to improve gait speed in persons with PD, but goals are often imprecise. How fast should each patient walk? And how do persons with PD benefit from walking faster? There is an important need to understand how walking speed affects fundamental aspects of gait—including energy cost and stability—that could guide individualized therapy decisions in persons with PD. Objective: We investigated how changes in walking speed affected energy cost and spatiotemporal gait parameters in persons with PD. We compared these effects between dopaminergic medication states and to those observed in age-matched control participants. Methods: Twelve persons with PD and twelve control participants performed treadmill walking trials spanning at least five different speeds (seven speeds were desired, but not all participants could walk at the fastest speeds). Persons with PD participated in two walking sessions on separate days (once while optimally medicated, once after 12-hour withdrawal from dopaminergic medication). We measured kinematic and metabolic data across all trials. Results: Persons with PD significantly reduced energy cost by walking faster than their preferred speeds. This held true across medication conditions and was not observed in control participants. The patient-specific walking speeds that reduced energy cost did not significantly affect gait variability metrics (used as proxies for gait stability). Conclusion: The gait slowing that occurs with PD results in energetically suboptimal walking. Rehabilitation strategies that target patient-specific increases in walking speed could result in a less effortful gait.


2020 ◽  
pp. 1-10
Author(s):  
Thomas H. Fritz ◽  
Gefion Liebau ◽  
Matthias Löhle ◽  
Berit Hartjen ◽  
Phillip Czech ◽  
...  

Background: It is known that music influences gait parameters in Parkinson’s disease (PD). However, it remains unclear whether this effect is merely due to temporal aspects of music (rhythm and tempo) or other musical parameters. Objective: To examine the influence of pleasant and unpleasant music on spatiotemporal gait parameters in PD, while controlling for rhythmic aspects of the musical signal. Methods: We measured spatiotemporal gait parameters of 18 patients suffering from mild PD (50%men, mean±SD age of 64±6 years; mean disease duration of 6±5 years; mean Unified PD Rating scale [UPDRS] motor score of 15±7) who listened to eight different pieces of music. Music pieces varied in harmonic consonance/dissonance to create the experience of pleasant/unpleasant feelings. To measure gait parameters, we used an established analysis of spatiotemporal gait, which consists of a walkway containing pressure-receptive sensors (GAITRite®). Repeated measures analyses of variance were used to evaluate effects of auditory stimuli. In addition, linear regression was used to evaluate effects of valence on gait. Results: Sensory dissonance modulated spatiotemporal and spatial gait parameters, namely velocity and stride length, while temporal gait parameters (cadence, swing duration) were not affected. In contrast, valence in music as perceived by patients was not associated with gait parameters. Motor and musical abilities did not relevantly influence the modulation of gait by auditory stimuli. Conclusion: Our observations suggest that dissonant music negatively affects particularly spatial gait parameters in PD by yet unknown mechanisms, but putatively through increased cognitive interference reducing attention in auditory cueing.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 231-231
Author(s):  
Jeffrey Hausdorff ◽  
Moriya Cohen ◽  
Natalie Ganz ◽  
Yitchak Green ◽  
Inbal Badichi ◽  
...  

Abstract Multidisciplinary interventions can improve gait and balance in patients with Parkinson’s disease (PD). However, it is not yet known if these interventions also positively impact the quality of daily-living walking. We, therefore, examined the effects of a multidisciplinary, intensive out-patient rehabilitation program (MIOR) as delivered by the rehabilitation center of EZRA–LEMARPE organization on gait and balance as measured in the clinic and on every-day walking, as measured during 1-week of continuous measurement. 46 PD patients (age: 70.05±7.71; gender: 31.3% women; disease duration: 8.85±6.27 yrs) were evaluated before and after participating in 8-weeks of physical, occupational, and hydro-therapy, boxing, and dance (3 days/week; 5 hrs/day). After the intervention, clinical measures of balance (MiniBest Test of Balance delta: 1.82±3.30 points, p=0.001), mobility (TUG delta: -1.78±6.15sec; p=0.001), and usual-walking speed (delta 19±16cm/s; p&lt;0.001) improved. Daily-living step counts and daily-living gait quality did not change (p&gt;0.5). In exploratory analyses, subjects were categorized as responders (Rs) and non-responders (NRs) based on changes in their daily-living walking gait speed. Rs increased their daily-living gait speed (delta: 10±14cm/s; p&lt;0.001); NRs did not. Rs (n=21) also improved their daily-living gait quality measures (e.g. stride regularity, step length, stride time variability). At baseline, disease severity (MDS-UPDRSIII) was lower (p=0.02) in Rs (25.33±11.47), compared to the NRs (34.38±14.27). These results demonstrate that improvements in the clinic do not necessarily transfer to improvements in daily-living gait. Further, in select patients, MIOR can ameliorate daily-living walking quality, potentially reducing the risk of falls and other adverse outcomes associated with impaired mobility.


Sign in / Sign up

Export Citation Format

Share Document