scholarly journals Effects of Static Stretching With High-Intensity and Short-Duration or Low-Intensity and Long-Duration on Range of Motion and Muscle Stiffness

2020 ◽  
Vol 11 ◽  
Author(s):  
Taizan Fukaya ◽  
Ryosuke Kiyono ◽  
Shigeru Sato ◽  
Kaoru Yahata ◽  
Koki Yasaka ◽  
...  

This study investigated the effects of static stretching (SS) delivered with the same load but using two protocols – high-intensity and short-duration and low-intensity and long-duration – on range of motion (ROM) and muscle stiffness. A total of 18 healthy students participated in the study. They randomly performed high-intensity and short-duration (120% and 100 s) or low-intensity and long-duration (50% and 240 s) SS. Outcomes were assessed on ROM, passive torque at dorsiflexion ROM, and shear elastic modulus of the medial gastrocnemius before and after static stretching. The results showed that ROM increased significantly at post-stretching compared to that at pre-stretching in both high-intensity and short-duration [+6.1° ± 4.6° (Δ25.7 ± 19.9%)] and low-intensity and long-duration [+3.6° ± 2.3° (Δ16.0 ± 11.8%)]. Also, the ROM was significantly higher at post-stretching in high-intensity and short-duration conditions than that in low-intensity and long-duration. The passive torque at dorsiflexion ROM was significantly increased in both high-intensity and short-duration [+5.8 ± 12.8 Nm (Δ22.9 ± 40.5%)] and low-intensity and long-duration [+2.1 ± 3.4 Nm (Δ6.9 ± 10.8%)] conditions, but no significant differences were observed between both conditions. The shear elastic modulus was significantly decreased in both high-intensity and short-duration [−8.8 ± 6.1 kPa (Δ − 38.8 ± 14.5%)] and low-intensity and long-duration [−8.0 ± 12.8 kPa (Δ − 22.2 ± 33.8%)] conditions. Moreover, the relative change in shear elastic modulus in the high-intensity and short-duration SS was significantly greater than that in low-intensity and long-duration SS. Our results suggest that a higher intensity of the static stretching should be conducted to increase ROM and decrease muscle stiffness, even for a short time.

2021 ◽  
Vol 11 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Shigeru Sato ◽  
Yuta Murakami ◽  
Ryosuke Kiyono ◽  
Kaoru Yahata ◽  
...  

Muscle strain is one of the most frequent sports injuries, having the rectus femoris (RF) muscle as the reported preferred site of quadriceps muscle strain. The decrease muscle stiffness could be an effective RF muscle strain prevention. In recent studies, a high-intensity static stretching intervention decreased passive stiffness, though no study has investigated on the effect of the different static stretching intervention intensities on quadriceps muscle stiffness. The purpose of this study was to investigate the three different quadriceps muscle stiffness intensities (120 vs. 100 vs. 80%). Eighteen healthy, sedentary male volunteers participated in the study and randomly performed three intensities. The static stretching intervention was performed in knee flexion with 30° hip extension. Three 60-second stretching intervention with a 30-second interval were performed at each stretching intensity. We measured knee flexion range of motion and shear elastic modulus of the RF muscle used by ultrasonic shear-wave elastography before and after the static stretching intervention. Our results showed that the knee flexion range of motion was increased after 100% (p < 0.01) and 120% intensities (p < 0.01) static stretching intervention, not in 80% intensity (p = 0.853). In addition, our results showed that the shear elastic modulus of the RF muscle was decreased only after 100% intensity static stretching intervention (p < 0.01), not after 80% (p = 0.365), and 120% intensities (p = 0.743). To prevent the quadriceps muscle strain, especially the RF muscle, 100%, not 120% (high) and 80% (low), intensity stretching could be beneficial in sports setting application.


Healthcare ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 314
Author(s):  
Masatoshi Nakamura ◽  
Shigeru Sato ◽  
Ryosuke Kiyono ◽  
Kaoru Yahata ◽  
Riku Yoshida ◽  
...  

Range of motion has been widely known to decrease with age; however, factors associated with its decrease in the elderly population and especially its gender difference have been unclear. Therefore, this study aimed to investigate the factors associated with ankle dorsiflexion range of motion in the older population. Both male (n = 17, mean ± SD; 70.5 ± 4.2 years; 165.4 ± 5.3 cm; 63.8 ± 7.7 kg) and female (n = 25, 74.0 ± 4.0 years; 151.2 ± 4.9 cm; 50.1 ± 5.6 kg) community-dwelling older adults participated in this study. The ankle dorsiflexion and passive torque of both legs were measured using a dynamometer, and shear elastic modulus of the medial gastrocnemius muscle at 0° ankle angle was measured using ultrasonic shear wave elastography. In this study, we defined the passive torque at dorsiflexion range of motion (DF ROM) as the index of stretch tolerance, and shear elastic modulus as the index of passive muscle stiffness. The partial correlation coefficient adjusted by age, height, weight, and side (dominant or nondominant side) was used to analyze the relationship between DF ROM and passive torque at DF ROM or shear elastic modulus of MG in each male and female participant, respectively. Our results revealed that dorsiflexion range of motion was significantly associated with passive torque at dorsiflexion range of motion in both male (r = 0.455, p = 0.012) and female (r = 0.486, p < 0.01), but not with shear elastic modulus in both male (r = −0.123, p = 0.519) and female (r = 0.019, p = 0.898). Our results suggested that the ankle dorsiflexion range of motion could be related to the stretch tolerance, but not to passive muscle stiffness in community-dwelling elderly population regardless of gender.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kosuke Takeuchi ◽  
Shigeru Sato ◽  
Ryosuke Kiyono ◽  
Kaoru Yahata ◽  
Yuta Murakami ◽  
...  

A previous study reported that 3-min of high-intensity static stretching at an intensity of 120% of range of motion (ROM) did not change the muscle stiffness of the rectus femoris, because of the overly high stress of the stretching. The purpose of this study was to examine the effects of high-intensity static stretching of a shorter duration or lower intensity on the flexibility of the rectus femoris than that of the previous study. Two experiments were conducted (Experiment 1 and 2). In Experiment 1, eleven healthy men underwent static stretching at the intensity of 120% of ROM for two different durations (1 and 3 min). In Experiment 2, fifteen healthy men underwent 3-min of static stretching at the intensity of 110% of ROM. The shear elastic modulus of the quadriceps were measured. In Experiment 1, ROM increased in both interventions (p &lt; 0.01), but the shear elastic modulus of the rectus femoris was not changed. In Experiment 2, ROM significantly increased (p &lt; 0.01), and the shear elastic modulus of the rectus femoris significantly decreased (p &lt; 0.05). It was suggested that the stretching intensity (110%) is more important than stretching duration to decrease the muscle stiffness of the rectus femoris.


2018 ◽  
Vol 02 (05) ◽  
pp. E142-E147 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Ryo Hirabayashi ◽  
Shuhei Ohya ◽  
Takafumi Aoki ◽  
Daichi Suzuki ◽  
...  

AbstractThis study aimed to clarify the acute effect of static stretching (SS) with superficial cooling on dorsiflexion range of motion (DF ROM) and muscle stiffness. Sixteen healthy males participated in the cooling condition and a control condition in a random order. The DF ROM and the shear elastic modulus of medial gastrocnemius (MG) in the dominant leg were measured during passive dorsiflexion. All measurements were performed prior to (PRE) and immediately after 20 min of cooling or rested for 20 min (POST), followed by 2 min SS (POST SS). In cooling condition, DF ROM at POST and POST SS were significantly higher than that at PRE and DF ROM at POST SS was significantly higher than that at POST. In addition, the shear elastic modulus at POST was significantly higher than that at PRE and the shear elastic modulus at POST SS was significantly lower than those at PRE and POST. However, there were no significant differences in the percentage changes between PRE and POST SS between the cooling and control conditions. Our results showed that effects of SS with superficial cooling on increases in ROM and decrease in muscle stiffness were no more beneficial than those of SS alone.


2020 ◽  
Vol 29 (5) ◽  
pp. 578-582
Author(s):  
Masatoshi Nakamura ◽  
Shigeru Sato ◽  
Ryosuke Kiyono ◽  
Nobushige Takahashi ◽  
Tomoichi Yoshida

Context: In clinical and sports settings, static stretching (SS) is usually performed to increase range of motion (ROM) and decrease passive muscle stiffness. Recently, the shear elastic modulus was measured by ultrasonic shear wave elastography as an index of muscle stiffness. Previous studies reported that the shear elastic modulus measured by ultrasound shear wave elastography decreased after SS, and the effects of SS on shear elastic modulus were likely affected by rest duration between sets of SS. Objective: To investigate the acute effects of SS with different rest durations on ROM and shear elastic modulus of gastrocnemius and to clarify whether the rest duration between sets of SS decreases the shear elastic modulus. Design: A randomized, repeated-measures experimental design. Setting: University laboratory. Participants: Sixteen healthy males volunteered to participate in the study (age 21.3 [0.8] y; height 171.8 [5.1] cm; weight 63.1 [4.5] kg). Main Outcome Measures: Each participant underwent 3 different rest interval durations during SS (ie, long rest duration: 90 s; normal rest duration: 30 s; and short rest duration: 10 s). This SS technique was repeated 10 times, thus lasting a total of 300 seconds with different rest durations in each protocol. The dorsiflexion ROM and shear elastic modulus were measured before and after SS. Results: Our results revealed that dorsiflexion ROM and shear elastic modulus were changed after 300-second SS; however, no effects of the rest duration between sets of SS were observed. Conclusions: In terms of decreasing the shear elastic modulus, clinicians and coaches should not focus on the rest duration when SS intervention is performed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kosuke Takeuchi ◽  
Kazunori Akizuki ◽  
Masatoshi Nakamura

AbstractThe purpose of the present study was to examine the association between static stretching load and changes in the flexibility of the hamstrings. Twelve healthy men received static stretching for 60 s at two different intensities based on the point of discomfort (100%POD and 120%POD intensity), in random order. To assess the flexibility of the hamstrings, the knee extension range of motion (ROM). Passive torque at end ROM, and muscle–tendon unit stiffness were measured before and after stretching. The static stretching load was calculated from the passive torque throughout static stretching. The knee extension ROM and passive torque at end ROM increased in both intensities (p < 0.01). The muscle–tendon unit stiffness decreased only in the 120%POD (p < 0.01). There were significant correlations between the static stretching load and the relative changes in the knee extension ROM (r = 0.56, p < 0.01) and muscle–tendon unit stiffness (r = − 0.76, p < 0.01). The results suggested that the static stretching load had significant effects on changes in the knee extension ROM and muscle–tendon unit stiffness of the hamstrings, and high-intensity static stretching was useful for improving the flexibility of the hamstrings because of its high static stretching load.


Author(s):  
Masatoshi Nakamura ◽  
Remi Onuma ◽  
Ryosuke Kiyono ◽  
Koki Yasaka ◽  
Shigeru Sato ◽  
...  

“Foam Rolling” has been used in sports settings to increase range of motion and decrease muscle stiffness without decreasing muscle strength and athletic performance. However, there has been no study investigating the acute and prolonged effect of different durations of foam rolling intervention on muscle stiffness, and the minimum foam rolling intervention duration required to decrease muscle stiffness is unclear. Therefore, the purpose of this study was to investigate the acute and prolonged effect of different durations of foam rolling intervention on ROM, muscle stiffness, and muscle strength. The 45 participants were randomly allocated to 1 of 3 groups (30 s × 1 times group vs 30 s × 3 times group vs 30 s× 10 times group). The outcome measures were dorsiflexion range of motion, shear elastic modulus of medial gastrocnemius, and muscle strength before, 2 min and 30 min after foam rolling intervention. There were no significant differences before and 2 min after foam rolling intervention in 30 s×1 time group, whereas dorsiflexion range of motion was increased in both 30 s×3 times group (p = 0.042, d = 0.26) and 30 s× 10 times group (p < 0.01, d = 0.33). However, the increase in dorsiflexion range of motion was returned to baseline value after 30 minutes in both 30 s × 3 times group and 30 s × 10 times group. In addition, there were no significant changes in shear elastic modulus and muscle strength in all groups. This study suggested that foam rolling for more than 90 s or more of foam rolling was effective in order to increase the range of motion immediately without changing muscle stiffness and muscle strength.


2021 ◽  
Vol 28 (10) ◽  
pp. 1-10
Author(s):  
Masatoshi Nakamura ◽  
Shigeru Sato ◽  
Futaba Sanuki ◽  
Yuta Murakami ◽  
Ryosuke Kiyono ◽  
...  

Background/aims High-intensity static stretching is assumed to increase the range of motion and/or decrease muscle stiffness; however, the effects of high-intensity static stretching on the quadriceps muscle have been debated. Hot pack application before high-intensity static stretching was assumed to decrease stretching pain, which is the main problem in high-intensity static stretching, and decrease quadriceps muscle stiffness. This study aimed to examine hot pack application before high-intensity static stretching on stretching pain, knee flexion range of motion, and quadriceps muscle stiffness. Methods In total, 21 healthy sedentary male participants randomly performed two interventions: high-intensity static stretching and hot pack application before stretching. Static stretching was performed at three 60-second stretching interventions with a 30-second interval. Then, a 20-minute hot pack was applied before high-intensity static stretching. The knee flexion range of motion and shear elastic modulus of the quadriceps muscle were measured by ultrasonic shear-wave elastography before and after the static stretching intervention. Results Stretching pain after hot pack application before stretching was lower than high-intensity static stretching alone. Significant increases were also found in knee flexion range of motion after both stretching interventions, but no significant difference was noted in the increase in the knee flexion range of motion with or without hot pack application. No significant change was found in quadriceps muscle stiffness in either intervention. Conclusions The results suggest that hot pack application before high-intensity static stretching could decrease stretching pain, but no significant difference in knee flexion range of motion increase was found.


Sign in / Sign up

Export Citation Format

Share Document