scholarly journals Continuous and Intermittent Artificial Gravity as a Countermeasure to the Cognitive Effects of 60 Days of Head-Down Tilt Bed Rest

2021 ◽  
Vol 12 ◽  
Author(s):  
Mathias Basner ◽  
David F. Dinges ◽  
Kia Howard ◽  
Tyler M. Moore ◽  
Ruben C. Gur ◽  
...  

Environmental and psychological stressors can adversely affect astronaut cognitive performance in space. This study used a 6° head-down tilt bed rest (HDBR) paradigm to simulate some of the physiologic changes induced by microgravity. Twenty-four participants (mean ± SD age 33.3 ± 9.2 years, N = 16 men) spent 60 consecutive days in strict HDBR. They were studied in three groups of eight subjects each. One group served as Control, whereas the other two groups received either a continuous or intermittent artificial gravity (AG) countermeasure of 30 min centrifugation daily (1 g acceleration at the center of mass and 2 g at the feet). Participants performed all 10 tests of NASA’s Cognition battery and a brief alertness and mood survey repeatedly before, during, and after the HDBR period. Test scores were adjusted for practice and stimulus set difficulty effects. A modest but statistically significant slowing across a range of cognitive domains was found in all three groups during HDBR compared to baseline, most consistently for sensorimotor speed, whereas accuracy was unaffected. These changes were observed early during HDBR and did not further worsen or improve with increasing time in HDBR, except for emotion recognition performance. With increasing time spent in HDBR, participants required longer time to decide which facial emotion was expressed. They were also more likely to select categories with negative valence over categories with neutral or positive valence. Except for workload, which was rated lower in the Control group, continuous or intermittent AG did not modify the effect of HDBR on cognitive performance or subjective responses. Participants expressed several negative survey responses during HDBR relative to baseline, and some of the responses further deteriorated during recovery, which highlights the importance of adequate medical and psychological support during extended duration HDBR studies. In conclusion, 60 days of HDBR were associated with moderate cognitive slowing and changes in emotion recognition performance, but these effects were not mitigated by either continuous or intermittent exposure to AG for 30 min daily.

2021 ◽  
Vol 12 ◽  
Author(s):  
Vienna Tran ◽  
Enrico De Martino ◽  
Julie Hides ◽  
Gordon Cable ◽  
James M. Elliott ◽  
...  

Exposure to spaceflight and head-down tilt (HDT) bed rest leads to decreases in the mass of the gluteal muscle. Preliminary results have suggested that interventions, such as artificial gravity (AG), can partially mitigate some of the physiological adaptations induced by HDT bed rest. However, its effect on the gluteal muscles is currently unknown. This study investigated the effects of daily AG on the gluteal muscles during 60-day HDT bed rest. Twenty-four healthy individuals participated in the study: eight received 30 min of continuous AG; eight received 6 × 5 min of AG, interspersed with rest periods; eight belonged to a control group. T1-weighted Dixon magnetic resonance imaging of the hip region was conducted at baseline and day 59 of HDT bed rest to establish changes in volumes and intramuscular lipid concentration (ILC). Results showed that, across groups, muscle volumes decreased by 9.2% for gluteus maximus (GMAX), 8.0% for gluteus medius (GMED), and 10.5% for gluteus minimus after 59-day HDT bed rest (all p < 0.005). The ILC increased by 1.3% for GMAX and 0.5% for GMED (both p < 0.05). Neither of the AG protocols mitigated deconditioning of the gluteal muscles. Whereas all gluteal muscles atrophied, the ratio of lipids to intramuscular water increased only in GMAX and GMED muscles. These changes could impair the function of the hip joint and increased the risk of falls. The deconditioning of the gluteal muscles in space may negatively impact the hip joint stability of astronauts when reexpose to terrestrial gravity.


2021 ◽  
Vol 3 ◽  
Author(s):  
Dario Martelli ◽  
Jiyeon Kang ◽  
Federica Aprigliano ◽  
Ursula M. Staudinger ◽  
Sunil K. Agrawal

Aging is accompanied by an alteration in the capacity to ambulate, react to external balance perturbations, and resolve cognitive tasks. Perturbation-based balance training has been used to induce adaptations of gait stability and reduce fall risk. The compensatory reactions generated in response to external perturbations depend on the activation of specific neural structures. This suggests that training balance recovery reactions should show acute cognitive training effects. This study aims to investigate whether exposure to repeated balance perturbations while walking can produce acute aftereffects that improve proactive and reactive strategies to control gait stability and cognitive performance in healthy older adults. It is expected that an adaptation of the recovery reactions would be associated with increased selective attention and information processing speed. Twenty-eight healthy older adults were assigned to either an Experimental (EG) or a Control Group (CG). The protocol was divided in 2 days. During the first visit, all participants completed the Symbol Digit Modalities Test (SDMT) and the Trail Making Test (TMT). During the second visit, a cable-driven robot was used to apply waist-pull perturbations while walking on a treadmill. The EG was trained with multidirectional perturbations of increasing intensity. The CG walked for a comparable amount of time with cables on, but without experiencing perturbations. Before and after the training, all participants were exposed to diagonal waist-pull perturbations. Changes in gait stability were evaluated by comparing the distance between the heel of the leading leg and the extrapolated Center of Mass (Heel-XCoM Distance—HXD) at perturbation onset (PON) and first compensatory heel strike (CHS). Finally, the cables were removed, and participants completed the SDMT and the TMT again. Results showed that only the EG adapted the gait stability (p < 0.001) in reaction to diagonal perturbations and showed improved performance in the SDMT (p < 0.001). This study provides the first evidence that a single session of perturbation-based balance training produce acute aftereffects in terms of increased cognitive performance and gait stability in healthy older adults. Future studies will include measures of functional activation of the cerebral cortex and examine whether a multi-session training will demonstrate chronic effects.


Author(s):  
Longxiang Su ◽  
Yinghua Guo ◽  
Yajuan Wang ◽  
Delong Wang ◽  
Changting Liu

AbstractTo explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P< 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50 and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P< 0.05). Neither control nor CM groups showed significant differences in the pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG CMs.


2019 ◽  
Author(s):  
Alex Bertrams ◽  
Katja Schlegel

People high in autistic-like traits have been found to have difficulties with recognizing emotions from nonverbal expressions. However, findings on the autism—emotion recognition relationship are inconsistent. In the present study, we investigated whether speeded reasoning ability (reasoning performance under time pressure) moderates the inverse relationship between autistic-like traits and emotion recognition performance. We expected the negative correlation between autistic-like traits and emotion recognition to be less strong when speeded reasoning ability was high. MTurkers (N = 217) completed the ten item version of the Autism Spectrum Quotient (AQ-10), two emotion recognition tests using videos with sound (Geneva Emotion Recognition Test, GERT-S) and pictures (Reading the Mind in the Eyes Test, RMET), and Baddeley's Grammatical Reasoning test to measure speeded reasoning. As expected, the higher the ability in speeded reasoning, the less were higher autistic-like traits related to lower emotion recognition performance. These results suggest that a high ability in making quick mental inferences may (partly) compensate for difficulties with intuitive emotion recognition related to autistic-like traits.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 52
Author(s):  
Tianyi Zhang ◽  
Abdallah El Ali ◽  
Chen Wang ◽  
Alan Hanjalic ◽  
Pablo Cesar

Recognizing user emotions while they watch short-form videos anytime and anywhere is essential for facilitating video content customization and personalization. However, most works either classify a single emotion per video stimuli, or are restricted to static, desktop environments. To address this, we propose a correlation-based emotion recognition algorithm (CorrNet) to recognize the valence and arousal (V-A) of each instance (fine-grained segment of signals) using only wearable, physiological signals (e.g., electrodermal activity, heart rate). CorrNet takes advantage of features both inside each instance (intra-modality features) and between different instances for the same video stimuli (correlation-based features). We first test our approach on an indoor-desktop affect dataset (CASE), and thereafter on an outdoor-mobile affect dataset (MERCA) which we collected using a smart wristband and wearable eyetracker. Results show that for subject-independent binary classification (high-low), CorrNet yields promising recognition accuracies: 76.37% and 74.03% for V-A on CASE, and 70.29% and 68.15% for V-A on MERCA. Our findings show: (1) instance segment lengths between 1–4 s result in highest recognition accuracies (2) accuracies between laboratory-grade and wearable sensors are comparable, even under low sampling rates (≤64 Hz) (3) large amounts of neutral V-A labels, an artifact of continuous affect annotation, result in varied recognition performance.


Author(s):  
Ruediger Kissgen ◽  
Sebastian Franke ◽  
Moritz Susewind ◽  
Maya Krischer

Background: Few studies in clinical attachment research to date have examined children with an attention-deficit/hyperactivity disorder (ADHD) diagnosis. This is surprising for two reasons: first, there are a number of parallels between the behaviors of children with an insecure and disorganized attachment and the behaviors of children with an ADHD diagnosis. Second, secure attachment has a positive effect on the development of skills in areas in which children with ADHD demonstrate problems (e.g., attention span, impulse control). There are currently no findings on whether or not and how insecure and disorganized attachment and ADHD affect children’s emotion recognition ability. Methods: This is a cross-sectional study, part exploratory and part hypothesis-driven in the context of basic research. A clinical sample of 5- to 10-year-old children with an ADHD diagnosis and their parents is to be compared to a non-clinical unaffected control group. Over a period of 3 years, 80 subjects and their parents are to be recruited in each group for participation in the study. Discussion: This study is the first to examine links between attachment, emotion recognition ability, and ADHD. It is also the first to include not just children with ADHD but also their mothers and fathers in its design. The findings should help reduce the research gap and generate more knowledge for family interventions in the case of ADHD.


Author(s):  
Enrico De Martino ◽  
Sauro Emerick Salomoni ◽  
Paul W. Hodges ◽  
Julie Hides ◽  
Kirsty Lindsay ◽  
...  

This study investigated whether artificial gravity (AG), induced by short-radius centrifugation, mitigated deterioration in standing balance and anticipatory postural adjustments (APAs) of trunk muscles following 60-day head-down tilt bed rest. Twenty-four participants were allocated to one of three groups: control group (N=8); 30 minutes continuous AG daily (N=8); intermittent 6x5 minutes AG daily (N=8). Before and immediately after bed rest, standing balance was assessed in four conditions: eyes open and closed on both stable and foam surfaces. Measures including sway path, root-mean-square, and peak sway velocity, sway area, sway frequency power, and sway density curve were extracted from the centre of pressure displacement. APAs were assessed during rapid arm movements using intramuscular or surface electromyography electrodes of the rectus abdominis, obliquus externus and internus abdominis, transversus abdominis, erector spinae at L1, L2, L3, and L4 vertebral levels, and deep lumbar multifidus muscles. The relative latency between the EMG onset of the deltoid and each of the trunk muscles was calculated. All three groups had poorer balance performance in most of the parameters (all P<0.05) and delayed APAs of the trunk muscles following bed rest (all P<0.05). Sway path and sway velocity were deteriorated, and sway frequency power was less in those who received intermittent AG than in the control group (all P<0.05), particularly in conditions with reduced proprioceptive feedback. These data highlight the potential of intermittent AG to mitigate deterioration of some aspects of postural control induced by gravitational unloading, but no protective effects on trunk muscle responses were observed.


2011 ◽  
Vol 198 (4) ◽  
pp. 302-308 ◽  
Author(s):  
Ian M. Anderson ◽  
Clare Shippen ◽  
Gabriella Juhasz ◽  
Diana Chase ◽  
Emma Thomas ◽  
...  

BackgroundNegative biases in emotional processing are well recognised in people who are currently depressed but are less well described in those with a history of depression, where such biases may contribute to vulnerability to relapse.AimsTo compare accuracy, discrimination and bias in face emotion recognition in those with current and remitted depression.MethodThe sample comprised a control group (n = 101), a currently depressed group (n = 30) and a remitted depression group (n = 99). Participants provided valid data after receiving a computerised face emotion recognition task following standardised assessment of diagnosis and mood symptoms.ResultsIn the control group women were more accurate in recognising emotions than men owing to greater discrimination. Among participants with depression, those in remission correctly identified more emotions than controls owing to increased response bias, whereas those currently depressed recognised fewer emotions owing to decreased discrimination. These effects were most marked for anger, fear and sadness but there was no significant emotion × group interaction, and a similar pattern tended to be seen for happiness although not for surprise or disgust. These differences were confined to participants who were antidepressant-free, with those taking antidepressants having similar results to the control group.ConclusionsAbnormalities in face emotion recognition differ between people with current depression and those in remission. Reduced discrimination in depressed participants may reflect withdrawal from the emotions of others, whereas the increased bias in those with a history of depression could contribute to vulnerability to relapse. The normal face emotion recognition seen in those taking medication may relate to the known effects of antidepressants on emotional processing and could contribute to their ability to protect against depressive relapse.


2016 ◽  
Vol 28 (7) ◽  
pp. 1165-1179 ◽  
Author(s):  
J. Pietschnig ◽  
L. Schröder ◽  
I. Ratheiser ◽  
I. Kryspin-Exner ◽  
M. Pflüger ◽  
...  

ABSTRACTBackground:Impairments in facial emotion recognition (FER) have been detected in patients with Parkinson disease (PD). Presently, we aim at assessing differences in emotion recognition performance in PD patient groups with and without mild forms of cognitive impairment (MCI) compared to healthy controls.Methods:Performance on a concise emotion recognition test battery (VERT-K) of three groups of 97 PD patients was compared with an age-equivalent sample of 168 healthy controls. Patients were categorized into groups according to two well-established classifications of MCI according to Petersen's (cognitively intact vs. amnestic MCI, aMCI, vs. non-amnestic MCI, non-aMCI) and Litvan's (cognitively intact vs. single-domain MCI, sMCI, vs. multi-domain MCI, mMCI) criteria. Patients and controls underwent individual assessments using a comprehensive neuropsychological test battery examining attention, executive functioning, language, and memory (Neuropsychological Test Battery Vienna, NTBV), the Beck Depression Inventory, and a measure of premorbid IQ (WST).Results:Cognitively intact PD patients and patients with MCI in PD (PD-MCI) showed significantly worse emotion recognition performance when compared to healthy controls. Between-groups effect sizes were substantial, showing non-trivial effects in all comparisons (Cohen's ds from 0.31 to 1.22). Moreover, emotion recognition performance was higher in women, positively associated with premorbid IQ and negatively associated with age. Depressive symptoms were not related to FER.Conclusions:The present investigation yields further evidence for impaired FER in PD. Interestingly, our data suggest FER deficits even in cognitively intact PD patients indicating FER dysfunction prior to the development of overt cognitive dysfunction. Age showed a negative association whereas IQ showed a positive association with FER.


Sign in / Sign up

Export Citation Format

Share Document