scholarly journals Annexin A1 Tripeptide Mimetic Increases Sirtuin-3 and Augments Mitochondrial Function to Limit Ischemic Kidney Injury

2021 ◽  
Vol 12 ◽  
Author(s):  
Hagir Suliman ◽  
Qing Ma ◽  
Zhiquan Zhang ◽  
Jiafa Ren ◽  
Benjamin T. Morris ◽  
...  

Background: Acute kidney injury (AKI) is one of the most common organ failures following surgery. We have developed a tripeptide mimetic (ANXA1sp) of the parent annexin A1 molecule that shows promise as an organ protectant limiting cellular stress; however, its potential as a kidney protective agent remains unexplored, and its mechanism of action is poorly understood. Our hypothesis was that ANXA1sp would limit kidney injury following surgical ischemic kidney injury.Methods: In a blinded fashion, wildtype mice were assigned to receive vehicle control or ANXA1sp one hour prior to and one hour after kidney vascular clamping. Our primary outcomes were markers of kidney injury and function as measured by serum creatinine and histologic injury scoring of kidney tissue sections. Immunofluorescence microscopy, real-time PCR, and Western blot were used to assess cell death, oxidative stress, and mitochondrial biomarkers. An in vitro model of oxygen-glucose deprivation in immortalized kidney tubule cells was used.Results: ANXA1sp given prior to and after ischemic kidney injury abrogated ischemic kidney injury. ANXA1sp limited cell death both in vivo and in vitro and abrogated oxidative stress following ischemia. ANXA1sp significantly increased the expression of markers associated with protective mitophagy and limited the expression of markers associated with detrimental mitochondrial fission. ANXA1sp upregulated the expression of the mitochondrial protectant sirtuin-3 (SIRT3) in the mitochondria of kidney tubular cells. Silencing of SIRT3 reversed ANXA1sp-mediated protection against hypoxic cell death.Conclusions: ANXA1sp limits kidney injury, upregulates SIRT3, and preserves mitochondrial integrity following ischemic kidney injury. ANXA1sp holds considerable promise as a perioperative kidney protectant prior to ischemia inducing surgery and kidney transplantation.

2020 ◽  
Author(s):  
Hagir Suliman ◽  
Qing Ma ◽  
Zhiquan Zhang ◽  
Jiafa Ren ◽  
Benjamin T Morris ◽  
...  

Background: Acute kidney injury (AKI) is one of the most common organ failures following surgery. We have developed a tripeptide mimetic (ANXA1sp) of the parent annexin A1 molecule that shows promise as an organ protectant limiting cellular stress; however, its potential as a kidney protective agent remains unexplored, and its mechanism of action is poorly understood. Our hypothesis was that ANXA1sp would limit kidney injury and improve mitochondrial function following surgical ischemic kidney injury. Methods: In blinded fashion, wildtype mice were assigned to receive vehicle control or experimental drug (ANXA1sp) 1 hour prior to and 1 hour after kidney vascular clamping. Our primary outcome was assessment of kidney injury and function by measurement of serum creatinine and blood urea nitrogen (BUN) and histologic injury scoring of kidney tissue sections. Immunofluorescence microscopy, real-time PCR and western blot were used to assess cell death, oxidative stress, and mitochondrial biomarkers. An in vitro model of oxygen-glucose deprivation in immortalized kidney tubule cells was used. Results: ANXA1sp given prior to and after ischemic kidney injury abrogated ischemic AKI. ANXA1sp further limited kidney cell death and oxidative stress following ischemia. ANXA1sp significantly improved markers associated with mitochondrial DNA repair and mitochondrial biogenesis. ANXA1sp upregulated expression of the mitochondrial protectant sirtuin-3 (SIRT3) in the mitochondria of kidney tubular cells. Silencing of SIRT3 limited ANXA1sp-mediated protection against hypoxic cell death. Conclusions: ANXA1sp limits kidney injury through upregulation of SIRT3 and consequent preservation of mitochondrial function. ANXA1sp holds considerable promise as a perioperative kidney protectant prior to ischemia inducing surgery and/or kidney transplantation.


2020 ◽  
Author(s):  
Yanlei Zheng ◽  
Ronghua Hu ◽  
Li Zhang

Abstract BackgroundInflammation and apoptosis contribute to the development of sepsis-induced acute kidney injury. Annexin A1 (ANXA1) is the calcium-dependent phospholipid-binding protein known to play an important role in a variety of cellular functions, including inflammation, apoptosis, migration and proliferation. However, the effect of ANXA1 on sepsis-induced acute injury has not been reported. Herein, we investigated the role and underlying mechanism of the mimetic peptide Ac2-26 of annexin A1 in sepsis-induce acute kidney injury in vivo and in vitro.MethodsIn vivo, a mouse model was established by cecal ligation and puncture (CLP), and the Ac2-26 peptide of ANXA1 (1 mg/kg) was intraperitoneally administered 2 hours before CLP. In vitro, A model of HK-2 cells was established by treatment with 10 μg/ml lipopolysaccharide (LPS), and the Ac2-26 peptide of ANXA1 (0.5 μmol/L) was administered 2 hours before LPS. The kidney function of mice detected by Elisa. The kidney tissue was examined by HE and TEM. The inflammatory cytokines and apoptotic molecules were measured by PCR, Elisa, Western blotting and Immunohistochemistry. The apoptosis was detected by TUNEL and flow cytometry.ResultsThe studies demonstrated that ANXA1 markedly improved kidney function and kidney tissue injury and enhanced 7-day survival in CLP-induced septic mice, which was accompanied by a significant decrease the inflammatory molecules. ANXA1 obviously downregulated the apoptosis-associated proteins and inhibited apoptosis in kidney tissue in vivo. In vitro studies showed that ANXA1 increased the viability of HK-2 cells, reduced the levels of the inflammatory molecules, downregulated the apoptosis-associated proteins Bax, upregulated the antiapoptotic protein Bcl-2 and inhibited the apoptosis of HK-2 cells.ConclusionsThe mimetic peptide Ac2-26 of annexin A1 protects against sepsis-induced inflammation, apoptosis, and kidney dysfunction via regulating the LXA4/PI3K/IKK-β/NF-κB signaling pathway.


2021 ◽  
Author(s):  
Weifeng Li ◽  
Qiuxia Huang ◽  
Jinjin Yu ◽  
Jiabao Yu ◽  
Yajie Yang ◽  
...  

Abstract Schisandrin (Sch) is a main bioactive component of Schisandra sphenanthera Rehd.et Wils. It has been reported that Sch could regulate inflammatory disease. This study evaluated the anti-inflammatory and anti-oxidant effects effect of Sch on lipopolysaccharide (LPS)-induced macrophages activation and acute kidney injury mice. Male Kunming mice were intraperitoneally injected with LPS (15 mg/kg) after administration of Sch (12.5, 25, 50 mg/kg) seven days for developing acute kidney injury vivo model. RAW264.7 macrophages were pretreatment Sch (10, 20, 40 µM) and administrated LPS (1 µg/ml) to create an in vitro injury model. ELISA results found that Sch administration reduced the production of inflammatory factors induced by LPS in kidney tissues and RAW264.7 macrophages. It has been observed that Sch alleviated oxidative stress by reducing the levels of reactive oxygen species, myeloperoxidase and malondialdehyde, and increasing the activity of superoxide dismutase and glutathione peroxidase. Hematoxylin-eosin staining data suggested that Sch administration significantly reduced inflammatory cell infiltration and the kidney tissue damage induced by LPS. The blood urea nitrogen and creatinine levels were also reduced by Sch treatment. In addition, Western blot and immunohistochemical analysis showed that Sch up-regulated the expression of Nrf2 and HO-1, and decreased the expression of p-p38, p-JNK, p-ERK1/2, p-IκBα, p-NF-κBp65 and TLR4. The current research showed that Sch reduced LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress, and provided insights into potential ways to treat AKI.


2021 ◽  
pp. 1-19
Author(s):  
Qin Yang ◽  
Li Gao ◽  
Xiao-wei Hu ◽  
Jia-nan Wang ◽  
Yao Zhang ◽  
...  

<b><i>Background:</i></b> Transforming growth factor-β (TGF-β)/Smad signaling is the central mediator in renal fibrosis, yet its functional role in acute kidney injury (AKI) is not fully understood. Recent evidence showed that TGF-β/Smad3 may be involved in the pathogenesis of AKI, but its functional role and mechanism of action in cisplatin-induced AKI are unclear. <b><i>Objectives:</i></b> Demonstrating that Smad3 may play certain roles in cisplatin nephropathy due to its potential effect on programmed cell death and inflammation. <b><i>Methods:</i></b> Here, we established a cisplatin-induced AKI mouse model with Smad3 knockout mice and created stable in vitro models with Smad3 knockdown tubular epithelial cells. In addition, we tested the potential of Smad3-targeted therapy using 2 in vivo protocols – lentivirus-mediated Smad3 silencing in vivo and use of naringenin, a monomer used in traditional Chinese medicine and a natural inhibitor of Smad3. <b><i>Results:</i></b> Disruption of Smad3 attenuated cisplatin-induced kidney injury, inflammation, and NADPH oxidase 4-dependent oxidative stress. We found that Smad3-targeted therapy protected against loss of renal function and alleviated apoptosis, RIPK-mediated necroptosis, renal inflammation, and oxidative stress in cisplatin nephropathy. <b><i>Conclusions:</i></b> These findings show that Smad3 promotes cisplatin-induced AKI and Smad3-targeted therapy protects against this pathological process. These findings have substantial clinical relevance, as they suggest a therapeutic target for AKI.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Chenguang Ding ◽  
Xiaoming Ding ◽  
Jin Zheng ◽  
Bo Wang ◽  
Yang Li ◽  
...  

Abstract Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat’s kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3′UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.


2018 ◽  
Vol 50 (3) ◽  
pp. 841-850 ◽  
Author(s):  
Hang Sun ◽  
Huihai Yang ◽  
Haonan Ruan ◽  
Wei Li ◽  
Xinhong He ◽  
...  

Background/Aims: Sika deer (Cervus nippon Temminck) antler is traditional animal medicine of renal protection in East Asia. This study measured the effect of sika deer antler protein (SDAPR) on gentamicin (GM)-induced cytotoxicity in HEK293 cells, and investigated the effect of SDAPR against GM-induced nephrotoxicity in mice. Methods: HEK293 cells viability and oxidative stress were measured in HEK293 cells while flow cytometry was used for apoptosis analysis. The acute kidney injury biomarkers, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL) and cystatin c (Cys-C), were repeatedly measured by ELISA assay. ICR male mice were randomly assigned six groups: Control, GM with vehicle, single SDAPR, GM with SDAPR at three concentrations 50, 100, 200 mg/kg/d, p.o., 10 d. GM was injected for 8 consecutive days (100 mg/kg/d, i.p.). Renal function, oxidative stress and levels of inflammatory factors were measured in vivo. Renal tissues were stained with H&E to observe pathological changes. Results: Pretreatment with SDAPR (0.5-4.0 mg/mL) significantly improved cell viability. Treatment with SDAPR could reduce KIM-1, NGAL and Cys-C activity. SDAPR could improve antioxidant defense and attenuated apoptosis on HEK293 cells. SDAPR also ameliorated GM-induced histopathologic changes, and decreased blood urea nitrogen (BUN) and serum creatinine (Cr). Additionally, SDAPR significantly regulated oxidative stress marker and interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) inflammatory cytokines. Conclusion: These results show that SDAPR could be an effective dietary supplement to relieve GM-induced nephrotoxicity by improved antioxidase activity, suppressed inflammation, and inhibited apoptosis in vitro and vivo.


2021 ◽  
Vol 22 (19) ◽  
pp. 10822
Author(s):  
Agata Winiarska ◽  
Monika Knysak ◽  
Katarzyna Nabrdalik ◽  
Janusz Gumprecht ◽  
Tomasz Stompór

The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) antagonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R antagonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Aya Barzelay ◽  
Shira Weisthal Algor ◽  
Anat Niztan ◽  
Sebastian Katz ◽  
Moshe Benhamou ◽  
...  

Oxidative stress leads to the degeneration of retinal pigment epithelial (RPE) and photoreceptor cells. We evaluated the potential of adipose-derived mesenchymal stem cells (ASCs) as a therapeutic tool by studying the migration capacity of ASCs in vitro and their protective effect against RPE cell death under oxidative stress in vitro and in vivo. ASCs exhibited enhanced migration when exposed to conditioned medium of oxidative stressed RPE cells obtained by hydrogen peroxide. Migration-related axis SDF-1/CXCR4 was studied, and upregulation of SDF-1 in stressed RPE and of CXCR4 in ASCs was detected. Moreover, ASCs’ conditioned medium prevented H2O2-induced cell death of RPE cells. Early passage ASCs had high expression level of HGF, low VEGF levels, and unmodulated IL-1β levels, compared to late passage ASCs. Thus, early passage ASCs show the potential to migrate towards damaged RPE cells and protect them in a paracrine manner from cell death induced by oxidative stress. In vivo, mice received systemic injection of NaIO3, and 72 h later, ASCs were transplanted in the subretinal space. Seven days after ASC transplantation, the eyes were enucleated fixed and frozen for immunohistochemical analysis. Under such conditions, ASC-treated mice showed preservation of nuclear layers in the outer nuclear layer and stronger staining of RPE and photoreceptor layer, compared to PBS-treated mice. Taken together, our results indicate that ASCs are able to home in on damaged RPE cells and protect against damage to the RPE and PR layers caused by oxidative stress. These data imply the potential that ASCs have in regenerating RPE under oxidative stress, providing the basis for a therapeutic approach to retinal degeneration diseases related to oxidative stress that could help save the eyesight of millions of people worldwide.


2019 ◽  
Vol 317 (4) ◽  
pp. F881-F889 ◽  
Author(s):  
Hyung Jung Oh ◽  
Hyewon Oh ◽  
Bo Young Nam ◽  
Je Sung You ◽  
Dong-Ryeol Ryu ◽  
...  

As oxidative stress is one major factor behind contrast-associated acute kidney injury (CA-AKI), we investigated the protective effect of klotho against CA-AKI via the antioxidative effect. In in vitro experiments, cells (NRK-52E) were divided into the following three groups: control, iopamidol, or iopamidol + recombinant klotho (rKL) groups. Moreover, cell viability was measured with the Cell Counting Kit-8 assay, and oxidative stress was examined with 2',7'-dichlorodihydrofluorescein diacetate fluorescence intensity. RT-PCR and Western blot analysis were performed to assess propidium iodide klotho expression, and Bax-to-Bcl-2 and apoptosis ratios were evaluated with annexin V/Hoechst 33342 staining. Furthermore, we knocked down the klotho gene using siRNA to verify the endogenous effect of klotho. In our in vivo experiments, oxidative stress was evaluated with the thiobarbituric acid-reactive substance assay, and apoptosis was evaluated with the Bax-to-Bcl-2 ratio and cleaved caspase-3 immunohistochemistry. Additionally, cell and tissue morphology were investigated with transmission electron microscopy. In both in vitro and in vivo experiments, mRNA and protein expression of klotho significantly decreased in CA-AKI mice compared with control mice, whereas oxidative stress and apoptosis markers were significantly increased in CA-AKI mice. However, rKL supplementation mitigated the elevated apoptotic markers and oxidative stress in the CA-AKI mouse model and improved cell viability. In contrast, oxidative stress and apoptotic markers were more aggravated when the klotho gene was knocked down. Moreover, we found more cytoplasmic vacuoles in the CA-AKI mouse model using transmission electron microscopy but fewer cytoplasmic vacuoles in rKL-supplemented cells. The present study shows that klotho in proximal tubular cells can protect against CA-AKI via an antioxidative effect.


Sign in / Sign up

Export Citation Format

Share Document