scholarly journals Neck Chamber Technique Revisited: Low-Noise Device Delivering Negative and Positive Pressure and Enabling Concomitant Carotid Artery Imaging With Ultrasonography

2021 ◽  
Vol 12 ◽  
Author(s):  
Rafał Seredyński ◽  
Tymoteusz Okupnik ◽  
Przemysław Musz ◽  
Stanisław Tubek ◽  
Beata Ponikowska ◽  
...  

Background and Objectives: Recently, novel noiseless device for the assessment of baroreceptor function with the neck suction (NS) has been presented. In this study, we present another in-house approach to the variable-pressure neck chamber method. Our device offers further critical improvements. First, it enables delivery of negative (NS) as well as positive pressure (neck pressurizing, NP) in a noiseless manner. Second, we used small, 3D-printed cups positioned over the carotid sinuses instead of cumbersome neck collar to improve subject comfort and to test feasibility of tracking the pressure-induced changes in carotid artery with ultrasonography.Methods: Five healthy, non-smoking, normal-weight subjects aged 29 ± 3 years (mean ± SD) volunteered for the study. Heart rate (HR, bpm) and mean arterial pressure (MAP, mmHg) responses to short, 7-s long episodes of NS and NP were recorded. Each trial consisted of 12 episodes of variable-pressure: six episodes of NS (suction ranging between -10 and -80 mmHg) and six episodes of NP (pressure ranging between + 10 and + 80 mmHg). Carotid artery sonography was performed during the NS and NP in four subjects, on another occasion.Results: The variable-pressure episodes resulted consistently in the expected pattern of hemodynamic alterations: HR and MAP increases or decreases following the NP and NS, respectively, as evidenced by the coefficient of determination (R2) of ≥0.78 for the carotid-HR response curve (for all five participants) and the carotid-MAP response curve (for four out of five participants; the curve cannot be calculated for one subject). We found a linear, dose-dependent relation between the applied pressure and the systolic-diastolic difference in carotid artery diameter.Conclusion: The novel device enables noiseless stimulation and unloading of the carotid baroreceptors with the negative and positive pressure, respectively, applied on the subject’s neck via small, asymmetric and one-side flattened, 3D-printed cups. The unique design of the cups enables concomitant visualizing of the carotid artery during the NS or NP administration, and thereby direct monitoring of the intensity of mechanical stimulus targeting the carotid baroreceptors.

1977 ◽  
Vol 53 (2) ◽  
pp. 165-171 ◽  
Author(s):  
J. Ludbrook ◽  
G. Mancia ◽  
A. Ferrari ◽  
A. Zanchetti

1. The variable-pressure neck-chamber method was analysed in ten healthy volunteer subjects to determine its suitability for the study of the carotid baroreceptor reflex in man. 2. Positive and negative pressures applied to the neck (range ± 60 mmHg) were always transmitted linearly to a tissue catheter outside the carotid sinus, but only 86% of positive pressure, and 64% of negative pressure. Tissue pressures were confirmed by simultaneous measurement in the internal jugular vein adjacent to the carotid sinus. 3. Positive and negative pressure changes within the above range did not alter Po2 of internal jugular venous blood, suggesting that cerebral blood flow was unaltered. 4. Positive pressure changes induced reflex pressor responses of similar magnitude at arterial Po2 12·8 and 70·1 kPa (96 and 527 mmHg), suggesting that the carotid chemoreceptors were not involved. 5. It is concluded that the variable-pressure neck chamber is a valid method for selectively studying the carotid baroreceptor reflex in man. However, transmission of external pneumatic pressure to the carotid sinus is imperfect and greater for positive than for negative pressure. This must be recognized to avoid underestimation of gain and distortion of shape of the reflex.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


1979 ◽  
Vol 88 (3) ◽  
pp. 368-376 ◽  
Author(s):  
A. Axelsson ◽  
J. Miller ◽  
M. Silverman

Acute middle ear (ME) and inner ear changes following brief unilateral phasic ME pressure changes (up to ± 6000/mm H2O) were studied in the guinea pig. Middle ear findings included perforation of the tympanic membrane, serous and serosanguinous exudate and hemorrhage of tympanic membrane and periosteal vessels. Changes were related to magnitude of applied pressure. Perforation and hemorrhage were more commonly seen with negative rather than positive pressure. Air bubbles behind the round window were seen with positive pressures. Occasional distortion, but never perforation of the round window, was noted. Hemorrhage of the scala tympani was observed with both positive and negative pressures; scala vestibuli hemorrhage was found with negative ME pressure. In some instances pressure direction and magnitude related changes were seen in the contralateral ear.


2003 ◽  
Vol 795 ◽  
Author(s):  
Aaron J. Chalekian ◽  
Roxann L. Engelstad ◽  
Edward G. Lovell

ABSTRACTAccurate mechanical properties of thin films are essential for viable design and fabrication of semiconductor devices and microelectromechanical systems. Relevant properties of thin films such as intrinsic stress, biaxial modulus, and fracture strength can be significantly different than their corresponding bulk values, and much more difficult to measure. However, such data can be obtained from the pressure-deflection response of clamped freestanding membranes, i.e., the so-called pressure-bulge test. Experimental challenges include membrane leakage prevention, ensuring proper structural boundary conditions, and accurately measuring applied pressure and transverse displacements simultaneously. In addition to these issues, most previously-developed pressure-bulge instruments rely on vacuum pump loadings. Such tools are limited by the one-atmosphere differential pressure over the membrane, which is inadequate for burst testing of high-strength films. Consequently, an enhanced pressure-bulge tool has been developed and will be described in this paper. It incorporates positive pressure to overcome the one-atmosphere load limitation, improved edge constraints, and the ability to test an array of membrane windows across a single substrate.


1979 ◽  
Vol 57 (s5) ◽  
pp. 165s-167s ◽  
Author(s):  
G. Mancia ◽  
G. Leonetti ◽  
G. B. Picotti ◽  
A. Ferrari ◽  
M. D. Galva ◽  
...  

1. Slight decreases and increases in carotid baroreceptor activity were induced in subjects with essential hypertension by slight alterations in carotid transmural pressure (variable pressure neck-chamber technique) in order to obtain limited increases and reductions in sympathetic adrenergic activity. 2. When sympathetic activity was reflexly increased there was a rise in arterial pressure but no significant increase in plasma catecholamines. Likewise when sympathetic activity was reflexly reduced there was a fall in arterial pressure but no significant reduction in plasma catecholamines. 3. Plasma noradrenaline and adrenaline significantly and markedly increased in the same subjects when sympathetic activity was increased by activation of both arterial and low pressure baroreceptor reflexes with tilting. 4. It is suggested that measurements of catecholamines in systemic plasma may reveal marked degrees of sympathetic activation but may not be a sensitive index of more moderate changes in sympathetic tone.


Author(s):  
David Gonzalez Rodriguez ◽  
Jose Garcia ◽  
Benjamin Ducharne ◽  
Richard Voyles ◽  
Robert A. Nawrocki ◽  
...  

Abstract 3D printed flexible sensors have demonstrated great potential for utilization in a variety of different applications including healthcare, environmental sensing, and industrial applications. In recent years, research on this topic has increased to meet low-cost sensing needs due to the development of innovative materials and printing techniques that reduce cost, production time, and enhance the electrical and mechanical properties of the sensors. This paper presents computational simulations of 3D printed flexible sensors, capable of producing an output signal based on the deformation caused by external forces. Two different sensors were designed and tested, working based on a capacitance and resistance change produced by structural deformation. The capacitance sensor was designed maximizing the area of the electrodes and distributing the electrodes over a flexible membrane taking advantage of the produced deformation to reduce the distance between the electrodes. The reduction in the distance between the electrodes increases the capacitance value of the structure. The capacitance sensor was able to almost triple its baseline capacitance when 30 kPa of pressure was applied. The resistance sensor was designed with one continuous flexible conductive element attached to a flexible membrane, taking advantage of the distortion induced in the conductive element. The deformation in the conductive element increases the length of the resistor and causes the resistance value of the structure to increase. The resistance sensor was able to increase its resistance by 1200 ω with 30 kPa of applied pressure. Finally, preliminary results of 3D printed sensors were demonstrated.


2013 ◽  
Vol 195 (3) ◽  
pp. 248-252 ◽  
Author(s):  
Raechel J. Toorop ◽  
Rkia Ousrout ◽  
Marc R.M. Scheltinga ◽  
Frans L. Moll ◽  
Ronald L.A.W. Bleys

1976 ◽  
Vol 51 (s3) ◽  
pp. 347s-349s ◽  
Author(s):  
J. Ludbrook ◽  
G. Mancia ◽  
A. Ferrari ◽  
A. Zanchetti

1. Transmission of pneumatic pressure from a neck chamber to the region of the carotid sinus is imperfect and asymmetric (86% of positive pressure, 64% of negative pressure). This has to be taken into account in the correct analysis of the carotid baroreceptor reflex. 2. There is no evidence for a reduction in cerebral blood flow nor of carotid chemoreceptor stimulation in response to an increase in neck chamber pressure of about 45 mmHg. Thus it is likely that the pressor response to this manoeuvre is in fact due to reduction in carotid baroreceptor activity.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Adam J. Sparks ◽  
Cody M. Smith ◽  
Ariana B. Allman ◽  
Jillian L. Senko ◽  
Karen M. Meess ◽  
...  

Abstract Purpose The purpose of this study is to evaluate biomechanical accuracy of 3D printed anatomical vessels using a material jetting printer (J750, Stratasys, Rehovot, Israel) by measuring distensibility via intravascular ultrasound. Materials and methods The test samples are 3D printed tubes to simulate arterial vessels (aorta, carotid artery, and coronary artery). Each vessel type is defined by design geometry of the vessel inner diameter and wall thickness. Vessel inner diameters are aorta = 30mm, carotid = 7mm, and coronary = 3mm. Vessel wall thickness are aorta = 3mm, carotid = 1.5mm, and coronary = 1mm. Each vessel type was printed in 3 different material options. Material options are user-selected from the J750 printer software graphical user interface as blood vessel wall anatomy elements in ‘compliant’, ‘slightly compliant’, and ‘rigid’ options. Three replicates of each vessel type were printed in each of the three selected material options, for a total of 27 models. The vessels were connected to a flow loop system where pressure was monitored via a pressure wire and cross-sectional area was measured with intravascular ultrasound (IVUS). Distensibility was calculated by comparing the % difference in cross-sectional area vs. pulse pressure to clinical literature values. Target clinical ranges for normal and diseased population distensibility are 10.3-44 % for the aorta, 5.1-10.1 % for carotid artery, and 0.5-6 % for coronary artery. Results Aorta test vessels had the most clinically representative distensibility when printed in user-selected ‘compliant’ and ‘slightly compliant’ material. All aorta test vessels of ‘compliant’ material (n = 3) and 2 of 3 ‘slightly compliant’ vessels evaluated were within target range. Carotid vessels were most clinically represented in distensibility when printed in ‘compliant’ and ‘slightly compliant’ material. For carotid test vessels, 2 of 3 ‘compliant’ material samples and 1 of 3 ‘slightly compliant’ material samples were within target range. Coronary arteries were most clinically represented in distensibility when printed in ‘slightly compliant’ and ‘rigid’ material. For coronary test vessels, 1 of 3 ‘slightly compliant’ materials and 3 of 3 ‘rigid’ material samples fell within target range. Conclusions This study suggests that advancements in materials and 3D printing technology introduced with the J750 Digital Anatomy 3D Printer can enable anatomical models with clinically relevant distensibility.


2022 ◽  
Vol 8 ◽  
Author(s):  
Charbel Tawk ◽  
Rahim Mutlu ◽  
Gursel Alici

A single universal robotic gripper with the capacity to fulfill a wide variety of gripping and grasping tasks has always been desirable. A three-dimensional (3D) printed modular soft gripper with highly conformal soft fingers that are composed of positive pressure soft pneumatic actuators along with a mechanical metamaterial was developed. The fingers of the soft gripper along with the mechanical metamaterial, which integrates a soft auxetic structure and compliant ribs, was 3D printed in a single step, without requiring support material and postprocessing, using a low-cost and open-source fused deposition modeling (FDM) 3D printer that employs a commercially available thermoplastic poly (urethane) (TPU). The soft fingers of the gripper were optimized using finite element modeling (FEM). The FE simulations accurately predicted the behavior and performance of the fingers in terms of deformation and tip force. Also, FEM was used to predict the contact behavior of the mechanical metamaterial to prove that it highly decreases the contact pressure by increasing the contact area between the soft fingers and the grasped objects and thus proving its effectiveness in enhancing the grasping performance of the gripper. The contact pressure can be decreased by up to 8.5 times with the implementation of the mechanical metamaterial. The configuration of the highly conformal gripper can be easily modulated by changing the number of fingers attached to its base to tailor it for specific manipulation tasks. Two-dimensional (2D) and 3D grasping experiments were conducted to assess the grasping performance of the soft modular gripper and to prove that the inclusion of the metamaterial increases its conformability and reduces the out-of-plane deformations of the soft monolithic fingers upon grasping different objects and consequently, resulting in the gripper in three different configurations including two, three and four-finger configurations successfully grasping a wide variety of objects.


Sign in / Sign up

Export Citation Format

Share Document