scholarly journals Etiology-Specific Remodeling in Ventricular Tissue of Heart Failure Patients and Its Implications for Computational Modeling of Electrical Conduction

2021 ◽  
Vol 12 ◽  
Author(s):  
Aparna C. Sankarankutty ◽  
Joachim Greiner ◽  
Jean Bragard ◽  
Joseph R. Visker ◽  
Thirupura S. Shankar ◽  
...  

With an estimated 64.3 million cases worldwide, heart failure (HF) imposes an enormous burden on healthcare systems. Sudden death from arrhythmia is the major cause of mortality in HF patients. Computational modeling of the failing heart provides insights into mechanisms of arrhythmogenesis, risk stratification of patients, and clinical treatment. However, the lack of a clinically informed approach to model cardiac tissues in HF hinders progress in developing patient-specific strategies. Here, we provide a microscopy-based foundation for modeling conduction in HF tissues. We acquired 2D images of left ventricular tissues from HF patients (n = 16) and donors (n = 5). The composition and heterogeneity of fibrosis were quantified at a sub-micrometer resolution over an area of 1 mm2. From the images, we constructed computational bidomain models of tissue electrophysiology. We computed local upstroke velocities of the membrane voltage and anisotropic conduction velocities (CV). The non-myocyte volume fraction was higher in HF than donors (39.68 ± 14.23 vs. 22.09 ± 2.72%, p < 0.01), and higher in ischemic (IC) than nonischemic (NIC) cardiomyopathy (47.2 ± 16.18 vs. 32.16 ± 6.55%, p < 0.05). The heterogeneity of fibrosis within each subject was highest for IC (27.1 ± 6.03%) and lowest for donors (7.47 ± 1.37%) with NIC (15.69 ± 5.76%) in between. K-means clustering of this heterogeneity discriminated IC and NIC with an accuracy of 81.25%. The heterogeneity in CV increased from donor to NIC to IC tissues. CV decreased with increasing fibrosis for longitudinal (R2 = 0.28, p < 0.05) and transverse conduction (R2 = 0.46, p < 0.01). The tilt angle of the CV vectors increased 2.1° for longitudinal and 0.91° for transverse conduction per 1% increase in fibrosis. Our study suggests that conduction fundamentally differs in the two etiologies due to the characteristics of fibrosis. Our study highlights the importance of the etiology-specific modeling of HF tissues and integration of medical history into electrophysiology models for personalized risk stratification and treatment planning.

2010 ◽  
Vol 6 (1) ◽  
pp. 83
Author(s):  
Jagmeet P Singh ◽  

Cardiac resynchronisation therapy (CRT) has gained widespread acceptance as a safe and effective therapeutic strategy for congestive heart failure (CHF) refractory to optimal medical therapy. The use of implantable devices has substantially altered the natural history of systolic heart failure. These devices exert their physiological impact through ventricular remodelling, associated with a reduction in left ventricular (LV) volumes and an improvement in ejection fraction (EF). Several prospective randomised studies have shown that this in turn translates into long-term clinical benefits such as improved quality of life, increased functional capacity and reduction in hospitalisation for heart failure and overall mortality. Despite these obvious benefits, there remain more than a few unresolved concerns, the most important being that up to one-third of patients treated with CRT do not derive any detectable benefit. There are several determinants of successful delivery and response to CRT, including selecting the appropriate patient, patient-specific optimal LV pacing lead placement and appropriate post-implant device care and follow-up. This article highlights the importance of collectively working on all of these aspects of CRT to enhance and maximise response.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A.N Kaburova ◽  
O.M Drapkina ◽  
S.M Uydin ◽  
M.V Vishnyakova ◽  
M.S Pokrovskaya ◽  
...  

Abstract Introduction Heart failure with preserved ejection fraction (HFpEF) represents a major challenge in modern cardiology. As described previously, in HFpEF comorbidities promote a systemic inflammatory state, leading to diffuse myocardial fibrosis resulting in myocardial stiffening. Gut dysbiosis which is considered as the novel source of chronic systemic inflammation has been actively investigated as the risk factor for the development and aggravation of cardiovascular diseases including heart failure. Cardiac magnetic resonance T1-mapping is a novel tool, which allows noninvasive quantification of the extracellular space and diffuse myocardial fibrosis. Moreover, the extracellular volume (ECV) fraction can be calculated, providing information on the relative expansion of the extracellular matrix, thus being a noninvasive alternative to myocardial biopsy studies. Purpose The research was aimed at investigating the correlation between the left ventricular ECV and gut microbial genera in patients with HFpEF. Methods 42 patients with confirmed HF-pEF (mediana and interquartile range of age 67 [64; 72] years, 47% men, body mass index <35 kg/m2 with no history of myocardial infarction or diabetes mellitus) were enrolled in the study. The patients underwent transthoracic echocardiography with Doppler study, HF-pEF was confirmed according to the recent ESC guidelines (based on E/e' ratio, N-terminal pro-B type natriuretic peptide >125 pg/ml and symptoms of heart failure). The intestinal microbiome was investigated using high-throughput sequencing of bacterial 16S rRNA gene. As the last step of research T1-myocardial mapping with the modified look-locker inversion-recovery protocol (MOLLI) sequence at 1.5 Tesla was performed to assess left ventricular extracellular volume fraction. Results The mean±std in ECV was 31.02±4.4%. The relative abundance (%) of the most prevalent phyla in gut microbiota was 48±22.5 for Firmicutes, 47.4±22.8 for Bacteroidetes and 1.5 [1.5; 2.5] for Proteobacteria. The analysis showed significant negative correlations between ECV and the following bacterial genera: Faecalibacterium (r=−0.35), Blautia (r=−0.43), Lachnoclostridium (r=−0.32). Moreover ECV positively correlated with Holdemania (r=0.4), Victivallis (r=0.38), Dehalobacterium (r=0.38), Enterococcus (r=0.33) and Catabacter (r=0.32). All correlation values with p<0.05. Conclusion We discovered both negative and positive significant correlations between ECV – the non-invasive marker of myocardial fibrosis and several bacterial genera, which may have negative impact on myocardial remodeling in HF-pEF. Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
P Garcia Bras ◽  
A Valentim Goncalves ◽  
J Reis ◽  
T Pereira Da Silva ◽  
R Ilhao Moreira ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Cardiopulmonary exercise testing (CPET) is used for risk stratification in patients with chronic heart failure (CHF). However, there is a lack of information regarding CPET prognostic power in patients under new HF therapies such as sacubitril/valsartan, Mitraclip, IV iron or SGLT2 inhibitors. The aim of this study was to evaluate the prognostic value of CPET parameters in a contemporary subset of patients with optimal medical and device therapy for CHF. Methods Retrospective evaluation of patients with CHF submitted to CPET in a tertiary center. Patients were followed up for 24 months for the composite endpoint of cardiac death, urgent heart transplantation or left ventricular assist device. CPET parameters, including peak oxygen consumption (pVO2) and VE/VCO2 slope, were analysed and their predictive power was measured. HF events were stratified according to cut-off values defined by the International Society for Heart and Lung Transplantation (ISHLT) guidelines: pVO2 of ≤12 mL/Kg/min and VE/VCO2 slope of >35. Results CPET was performed in 204 patients, from 2014 to 2018. Mean age was 59 ± 13 years, 83% male, with a mean left ventricular ejection fraction of 33 ± 8%, and a mean Heart Failure Survival Score of 8.6 ± 1.3. The discriminative power of CPET parameters is displayed in the Table. In patients with pVO2 ≤12 mL/Kg/min, the composite endpoint occurred in 18% of patients. A pVO2 value of ≤12 mL/Kg/min had a positive predictive power of 18% while pVO2 >12 had a negative predictive power of 93%. Regarding VE/VCO2 slope >35, the composite endpoint occurred in 13% of patients. A VE/VCO2 slope value of >35 had a positive predictive power of 13% while VE/VCO2 slope <35 had a negative predictive power or 94%. Conclusion Using ISHLT guideline cut-off values for advanced HF therapies patient selection, there was a reduced number of HF events (<20%) at 24 months in patients under optimal CHF therapy. While pVO2 and VE/VCO2 slope are still valuable parameters in risk stratification, redefining cut-off values may be necessary in a modern HF population. Discriminative power of CPET parameters Parameters HR; 95% CI AUC p-value Peak VO2 0.824 (0.728-0.934) 0.781 0.001 Percent of predicted pVO2 0.942 (0.907-0.978) 0.774 0.002 VE/VCO2 slope 1.068 (1.031-1.106) 0.756 0.008 Cardiorespiratory optimal point 1.118 (1.053-1.188) 0.746 0.004 PETCO2 maximum exercise 0.854 (0.768-0.950) 0.775 0.003 Ventilatory Power 0.358 (0.176-0.728) 0.796 0.002 HR Hazard ratio, AUC: Area under the curve, PETCO2: end-tidal CO2 pressure


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Pappu Ananya ◽  
Michael Binder ◽  
Yang Wanjun ◽  
Rebecca McClellan ◽  
Brittney Murray ◽  
...  

Introduction: Mitochondrial heart disease due to pathogenic mitochondrial DNA (mtDNA) mutations can present as hypertrophic or dilated cardiomyopathy, ventricular arrhythmias and conduction disease. It is estimated that the mutation rate of mtDNA is 10 to 20-fold higher than that of nuclear DNA genes due to damage from reactive oxygen species released as byproducts during oxidative phosphorylation. When a new mtDNA mutation arises, it creates an intracellular heteroplasmic mixture of mutant and normal mtDNAs, called heteroplasmy. Heteroplasmy levels can vary in various tissues and examining mtDNA variants in blood may not be representative for the heart. The frequency of pathogenic mtDNA variants in myocardial tissues in unknown. Hypothesis: Human ventricular tissue may contain mtDNA mutations which can lead to alterations in mitochondrial function and increase individual risk for heart failure. Methods: Mitochondrial DNA was isolated from 61 left ventricular myocardial samples obtained from failing human hearts at the time of transplantation. mtDNA was sequenced with 23 primer pairs. In silico prediction of non-conservative missense variants was performed via PolyPhen-2. Heteroplasmy levels of variants predicted to be pathogenic were quantified using allele-specific ARMS-PCR. Results: We identified 21 mtDNA non-synonymous variants predicted to be pathogenic in 17 hearts. Notably, one heart contained four pathogenic mtDNA variants (ATP6: p.M104; ND5: p.P265S; ND4: p.N390S and p.L445F). Heteroplasmy levels exceeded 90% for all four variants in myocardial tissue and were significantly lower in blood. No pathogenic mtDNA variants were identified in 44 hearts. Hearts with mtDNA mutations had higher levels of myocardial GDF-15 (growth differentiation factor-15; 6.2±2.3 vs. 1.3±0.18, p=0.045), an established serum biomarker in various mitochondrial diseases. Conclusions: Non-synonymous mtDNA variants predicted to be pathogenic are common in human left ventricular tissue and may be an important modifier of the heart failure phenotype. Future studies are necessary to correlate myocardial mtDNA mutations with cardiovascular outcomes and to assess whether serum GDF-15 allows identifying patients with myocardial mtDNA mutations.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Karen A Takazaki1 ◽  
Thiago Quinaglia A. C. Silva ◽  
Alberto Martinez ◽  
Tomas Neilan ◽  
Ravi SHAH ◽  
...  

Background: Heart Failure (HF) is the most common cause of death in Friedreich’s ataxia (FRDA), an inherited mitochondrial disease. Myocardial fibrosis is a well-documented histopathological feature among FRDA patients with HF. Objectives: In this study we will investigate the myocardial extracellular volume fraction (ECV) and intracellular water lifetime (τ ic ), using T1-weighted CMR imaging, in a cohort of patients with FRDA without signs of heart failure. We will also investigate whether myocardial tissue phenotyping by CMR can highlight particular characteristics of LV remodeling in FRDA’s cardiomyopathy, beyond those currently assessed with imaging-based classification of disease severity. Methods: Twenty-six FRDA’s patients (age 26.6±9.3 years, 15 women) without signs of HF, and 10 healthy controls (32.6±7.3 years, 5 women) underwent cardiac magnetic resonance (CMR) studies for assessment of left ventricular (LV) function, myocardial T1, late gadolinium enhancement (LGE), extracellular volume fraction (ECV), and intracellular water-lifetime (τ ic ) as marker of cardiomyocyte size. Neurological decline was determined using the FRDA rating scale (FARS 3). Results: FRDA patients had normal LV ejection fraction (LVEF: 67.66±11.4 vs. 63.9±9.0, P=0.311), larger LV mass index (LVMASSi: 61.03±22.1 vs. 45±4.2g/m 2 , P<0.001), and decreased LV end-diastolic volume index (LVEDVi 53.42±12 vs. 75.7±16.1, P=0.002), compared with controls. ECV and τ ic , were increased in FRDA patients (ECV: 0.36±0.05 vs. 0.25±0.02, P<0.0001; τ ic : 0.13±0.07 vs. 0.06±0.03, P=0.001). ECV was positively associated with LV mass-to-volume ratio (r=0.628, P<0.001). FARS 3 correlated positively with disease duration (r=0.669, P<0.001), and negatively with τ ic , (r=0.478, P=0.039). LVMASSi and cardiomyocyte mass-index [(1–ECV)LVMASSi] declined with age, indicating that LV hypertrophy may transition to a “burn-out” phase with LV atrophy. Conclusions: LV hypertrophy in FRDA reflects an expansion of the myocardial interstitium and an increase in cardiomyocyte size. In contrast, the neurological decline was more likely with decreasing cardiomyocyte size, possibly an early sign of myocardial “burn-out” in FRDA.


2001 ◽  
Vol 280 (2) ◽  
pp. H674-H683 ◽  
Author(s):  
Gregory L. Brower ◽  
Joseph S. Janicki

We previously reported an approximately 50% incidence of rats with symptoms of congestive heart failure (CHF) at 8 wk postinfrarenal aorto-caval fistula. However, it was not clear whether compensatory ventricular remodeling could continue beyond 8 wk or whether the remaining animals would have developed CHF or died. Therefore, the intent of this study was to complete the characterization of this model of sustained volume overload by determining the morbidity and mortality and the temporal response of left ventricular (LV) remodeling and function beyond 8 wk. The findings demonstrate an upper limit to LV hypertrophy and substantial increases in LV volume and compliance, matrix metalloproteinase activity, and collagen volume fraction associated with the development of CHF. There was an 80% incidence of morbidity and mortality following 21 wk of chronic volume overload. These findings indicate that the development of CHF is triggered by marked ventricular dilatation and increased compliance occurring once the myocardial hypertrophic response is exhausted.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Jessica M Bradley ◽  
Craig M Ziblich ◽  
Kazi N Islam ◽  
Amanda M Rushing ◽  
David J Polhemus ◽  
...  

Background: Cardiac fibroblasts are critical mediators of fibrotic remodeling in the failing heart. These maladaptive structural changes can worsen cardiac function accelerating the progression to decompensated heart failure (HF). We investigated the effects of a novel inhibitor of the conversion of normal fibroblast to the myofibroblast phenotype in the setting of pressure overload induced HF. Methods: Male C57BL/6J mice (10 wks) were subjected to transverse aortic constriction (TAC; 27 g needle) and NM922 (NovoMedix, LLC50 mg/kg/d i.p.) or VEH (DMSO + HS-15) was administered daily starting at 6 wks post TAC. Echocardiography was assessed at baseline and for 16 wks post TAC. At the 16 wk endpoint, mice were sacrificed and hearts were collected for biochemical and molecular assessment. Results: NM922 significantly attenuated TAC-induced left ventricular (LV) dilation at 16 wks post TAC (LVEDD: 3.5 ± 0.1 vs. 4.5 ± 0.2 mm, p < 0.01; LVESD: 2.5 ± 0.2 vs. 3.8 ± 0.3 mm, p < 0.01) compared to VEH. NM922 treated mice displayed reduced wall thickening (LVPWd: 1.0 ± 0.03 vs. 1.2 ± 0.05 mm; p < 0.05) at 10 wks post TAC compared to VEH. LV ejection fraction (LVEF) was preserved in NM922 treated mice at 8-16 wks post TAC compared to VEH (*p < 0.05; **p < 0.001) compared to VEH. Treatment with NM922 resulted in reductions in heart (8.5 ± 0.5 vs. 12.0 ± 0.9 mg/mm; p < 0.01) and lung (8.2 ± 0.3 vs. 11.5 ± 0.6 mg/mm; p < 0.0001) weights compared to VEH. Picrosirius Red staining revealed that NM922 reduced cardiac interstitial collagen volume fraction by 50% (p < 0.05 vs. VEH). Circulating BNP levels trended toward lower (p = 0.08) in the NM922 mice when compared to VEH. Conclusion: Chronic treatment with NM922 following the onset of cardiac hypertrophy and HF resulted in attenuated myocardial collagen formation and adverse remodeling with preservation of LVEF. Future studies are aimed at further elucidation of the molecular and cellular mechanisms by which this novel agent protects the failing heart.


Author(s):  
Stamatia Pagoulatou ◽  
Karl-Philipp Rommel ◽  
Karl-Patrik Kresoja ◽  
Maximilian von Roeder ◽  
Philipp Lurz ◽  
...  

Accurate assessment of the left ventricular (LV) systolic function is indispensable in the clinic. However, estimation of a precise index of cardiac contractility, i.e., the end-systolic elastance (Ees), is invasive and cannot be established as clinical routine. The aim of this work was to present and validate a methodology that allows for the estimation of Ees from simple and readily available non-invasive measurements. The method is based on a validated model of the cardiovascular system and non-invasive data from arm-cuff pressure and routine echocardiography to render the model patient-specific. Briefly, the algorithm first uses the measured aortic flow as model input and optimizes the properties of the arterial system model in order to achieve correct prediction of the patient's peripheral pressure. In a second step, the personalized arterial system is coupled with the cardiac model (time-varying elastance model) and the LV systolic properties, including Ees, are tuned to predict accurately the aortic flow waveform. The algorithm was validated against invasive measurements of Ees (multiple pressure-volume loop analysis) taken from n=10 heart failure patients with preserved ejection fraction and n=9 patients without heart failure. Invasive measurements of Ees (median 2.4 mmHg/mL, range [1.0, 5.0] mmHg/mL) agreed well with method predictions (nRMSE=9%, ρ=0.89, bias=-0.1 mmHg/mL and limits of agreement [-0.9, 0.6] mmHg/mL). This is a promising first step towards the development of a valuable tool that can be used by clinicians to assess systolic performance of the LV in the critically ill.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Alfonso Valle ◽  
Mercedes Nadal ◽  
Jordi Estornell ◽  
Nieves Martinez ◽  
Miguel Corbi ◽  
...  

The identification of prognostic markers in patients with heart failure of both ischemic and non ischemic etiology is an increasing need in the era of devices therapy. Risk stratification for sudden cardiac death (SCD) remains problematic with reliance on left ventricular function which predicts total mortality rather than arrhythmic events (AE). Recently cardiac magnetic resonance was employed to predict susceptibility for malignant arrhythmias. This study sought to determine the utility of late gadolinium enhancement (LGE) to predict AE. Three hundred consecutive patients with symptomatic heart failure and systolic dysfunction of both ischemic and non ischemic cause undergoing CMR, were classified into two groups attending to the presence (n 160) or absence of LGE (n 140), and were followed prospectively during 842 days. The primary endpoint was the combined of SCD or Ventricular tachycardia (VT). 23 patients had AE (8 SCD/15 VT) during the follow-up, 19 of them presenting LGE (83%). The presence of LGE was associated to a significantly higher AE rate (11.8.% vs 2.8% p< 0.001)(figure ). Compared to patients without LGE, midwall fibrosis and an ischemic pattern of LGE predicted AE. (3% vs 5% vs 14%, p= 0.001) LGE is a new non-invasive predictor of AE in patients with heart failure and systolic dysfunction. This suggest a potential role for risk stratification and better selection of patients who needs device therapy


Sign in / Sign up

Export Citation Format

Share Document