scholarly journals Intermittent Hypoxia Exposure Helps to Restore the Reduced Hemoglobin Concentration During Intense Exercise Training in Trained Swimmers

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiquan Weng ◽  
Jieru Lin ◽  
Yu Yuan ◽  
Baoxuan Lin ◽  
Weiwei Huang ◽  
...  

In prolonged intense exercise training, the training load of athletes may be reduced once their hemoglobin concentrations ([Hb]s) are decreased dramatically. We previously reported that intermittent hypoxia exposure (IHE) could be used to alleviate the decrease of [Hb] and help to maintain the training load in rats. To further explore the feasibility of applying IHE intervention to athletes during prolonged intense exercise training, 6 trained swimmers were recruited to conduct a 4-week IHE intervention at the intervals after their [Hb] dropped for 10% or more during their training season. IHE intervention lasted 1 h and took place once a day and five times a week. Hematological and hormonal parameters, including [Hb], red blood cells (RBC), hematocrit (Hct), reticulocytes, serum erythropoietin (EPO), testosterone (T) and cortisol (C) were examined. After the IHE intervention was launched, [Hb], RBC and Hct of the subjects were increased progressively with their maximum levels (P < 0.01) showing at the third or fourth week, respectively. An increase in reticulocyte count (P < 0.01) suggests that IHE intervention promotes erythropoiesis to increase [Hb]. Besides, serum level of EPO, the hormone known to stimulate erythropoiesis, was overall higher than that before the IHE intervention, although it was statistically insignificant. Furthermore, the serum level of T, another hormone known to stimulate erythropoiesis, was increased progressively with the maximum level showing at the fourth week. Collectively, this study further confirms that IHE intervention may be used as a new strategy to prevent intense exercise training-induced reductions in [Hb].

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiquan Weng ◽  
Hao Chen ◽  
Qun Yu ◽  
Guoqing Xu ◽  
Yan Meng ◽  
...  

Intense exercise training can induce low concentrations of hemoglobin, which may be followed by maladaptation. Therefore, it is important for athletes to prevent low concentrations of hemoglobin during intense exercise training. In this study, we explored whether different protocols of intermittent hypoxic exposure (IHE, normobaric hypoxia, 14.5% O2) could prevent the exercise training-induced reduction in hemoglobin concentration in rats. Six-week-old male Sprague-Dawley rats were subjected to progressive intense treadmill exercise training over three weeks followed by three weeks of training with IHE after exercise. IHE lasted either 1 h, 2 h, or 1 h + 1 h (separated by a 3-h interval) after the exercise sessions. Hematological parameters, including hemoglobin concentration [(Hb)], red blood cells (RBCs), and hematocrit (Hct), and both renal and serum erythropoietin (EPO) were examined. We found that intense exercise training significantly reduced [Hb], RBCs, Hct, food intake and body weight (P < 0.01). Analysis of reticulocyte hemoglobin content (CHr) and reticulocyte counts in the serum of the rats suggested that this reduction was not due to iron deficiency or other cofounding factors. The addition of IHE after the intense exercise training sessions significantly alleviated the reduction in [Hb], RBCs, and Hct (P < 0.05) without an obvious impact on either food intake or body weight (P > 0.05). Increase in reticulocyte count in the rats from the IHE groups (P < 0.05 or P < 0.01) suggests that IHE promotes erythropoiesis to increase the hemoglobin concentration. Furthermore, the addition of IHE after the intense exercise training sessions also significantly increased the concentration of renal EPO (P < 0.05), although the increase of the serum EPO level was statistically insignificant (P > 0.05). The different IHE protocols were similarly effective at increasing renal EPO and preventing the training-induced decreases in [Hb], RBCs, and Hct. Collectively, this study suggests that IHE may be used as a new strategy to prevent intense exercise training-induced reductions in [Hb], and deserves future exploration in athletes.


1996 ◽  
Vol 270 (1) ◽  
pp. H121-H126 ◽  
Author(s):  
J. K. Shoemaker ◽  
H. J. Green ◽  
J. Coates ◽  
M. Ali ◽  
S. Grant

The purpose of this study was to investigate the time-dependent effects of long-term prolonged exercise training on vascular volumes and hematological status. Training using seven untrained males [age 21.1 +/- 1.4 (SE) yr] initially consisted of cycling at 68% of peak aerobic power (VO2peak) for 2 h/day, 4-5 days/wk, for 11 wk. Absolute training intensity was increased every 3 wk. Red cell mass (RCM), obtained using 51Cr, was unchanged (P > 0.05) with training (2,142 +/- 95, 2,168 +/- 86, 2,003 +/- 112, and 2,080 +/- 116 ml at 0, 3, 6, and 11 wk, respectively) as were serum erythropoietin levels (17.1 +/- 4.3, 13.9 +/- 3.5, and 17.0 +/- 2.0 U/l at 0, 6, and 11 wk, respectively). Plasma volume measured with 125I-labeled albumin and total blood volume (TBV) were also not significantly altered. The increase in mean cell volume that occurred with training (89.7 +/- 0.95 vs. 91.0 +/- 1.0 fl, 0 vs. 6 wk, P < 0.05) was not accompanied by changes in either mean cell hemoglobin or mean cell hemoglobin concentration. Serum ferritin was reduced 73% with training (67.4 +/- 13 to 17.9 +/- 1 microgram/l, 0 vs. 11 wk, P < 0.05). Total hemoglobin (HbTot) calculated as the product of hemoglobin concentration and TBV was unaltered (P > 0.05) at both 6 and 11 wk of training. The 15% increase in VO2peak (3.39 +/- 0.16 to 3.87 +/- 0.14 l/min, 0 vs. 11 wk, P < 0.05) with training occurred despite a failure of training to change TBV, RCM, or HbTot.


2012 ◽  
Vol 37 (6) ◽  
pp. 1140-1146 ◽  
Author(s):  
Grasiely Faccin Borges ◽  
Luis Manuel Pinto Lopes Rama ◽  
Susana Pedreiro ◽  
Fátima Rosado ◽  
Francisco Alves ◽  
...  

This study monitored haematological markers in response to training load in elite kayakers during a training season. The sample comprised eight elite kayakers aged 22 ± 4.2 years with a 77.2 ± 6.7 kg body mass and a 177.5 ± 5.6 cm stature. The initial [Formula: see text]O2max was 61.2 ± 5.5 mL·kg–1·min–1. The control group consisted of six healthy males, aged 18.6 ± 1.1 years, with an 81.3 ± 13.8 kg body mass and a 171.9 ± 4.5 cm stature. Blood samples were collected at the beginning of the training season after an off-training period of six weeks (t0), at the 11th week after the application of high training volumes (t1), at the 26th week after an intense training cycle (t2), and at the 31st week at the end of a tapering phase (t3). Differences between time points were detected using ANOVA and the Bonferroni post hoc test. Significant changes were found after the intense training cycle (t2), lymphocytes decreased while haemoglobin, mean corpuscular volume, mean corposcular haemoglobin, mean concentration of corpuscular hemoglobin concentration, platelets distribution width, and red blood cell distribution width values increased when compared with baseline values. At t3, a reduction in monocyte numbers and an increase in mean platelet volume compared with baseline values were seen. By reducing the volume and intensity of training, many variables returned to values close to those at baseline. Although many athletes had accumulated responses over time due to training, they still suffered transient changes that appear to be influenced by training load. Haemorheology monitoring may help detect health risks, especially during times of intensified training.


2007 ◽  
Vol 25 (11) ◽  
pp. 1241-1250 ◽  
Author(s):  
Rosario Abellan ◽  
Rosa Ventura ◽  
Angel F. Remacha ◽  
Ferran A. Rodríguez ◽  
José A. Pascual ◽  
...  

2020 ◽  
Vol 35 (11) ◽  
pp. 2613-2618
Author(s):  
D Vaamonde ◽  
A C Hackney ◽  
J M Garcia Manso ◽  
E Arriaza Ardiles ◽  
M Vaquero

Abstract STUDY QUESTION Can the exercise training load of elite male athletes influence the sex ratio of their offspring? SUMMARY ANSWER This is the first study assessing the influence of exercise training load on the offspring sex ratio of children from male professional athletes, observing a bias toward more females being born as a result of both high-intensity and high-volume loads, with intensity having the greatest effect. WHAT IS KNOWN ALREADY There is a relatively constant population sex ratio of males to females among various species; however, certain events and circumstances may alter this population sex ratio favoring one sex over the other. STUDY DESIGN, SIZE, DURATION Observational, descriptive cross-sectional study with a duration of 3 months. PARTICIPANTS/MATERIALS, SETTING, METHODS Seventy-five male professional soccer players from First Division soccer teams. Offspring variables were sex of the offspring, number of children and order of birth. Exercise training variables were volume and intensity. MAIN RESULTS AND THE ROLE OF CHANCE Total offspring was 122 children (52 males (42.6%), 70 females (57.4%)). Analysis revealed that increase in either the volume (P &lt; 0.001) or intensity (P &lt; 0.001) of training by the players shifted the birth offspring ratio more toward females. Within the sample of females born, more births (i.e. number) were observed as a consequence of training at the highest intensity (45 out of 70; P &lt; 0.001), no such pattern occurred within males (P &gt; 0.05). When female versus male births were compared within each intensity, only the high-intensity comparison was significant (45 (75%) females vs 15 (25%) males, P &lt; 0.001). LIMITATIONS, REASONS FOR CAUTION While this is the first study assessing differences in the sex ratio of the offspring of male athletes (i.e. soccer players), we acknowledge there are limitations and confounders within our approach; e.g. small sample size, ethnic background and variations in the timing of intercourse relative to ovulation as well as in sex hormone levels. As such, we propose that future research is needed to confirm or refute our findings. It is recommended that such work expand on the measurements obtained and conduct direct assessment of sperm characteristics. WIDER IMPLICATIONS OF THE FINDINGS The findings of the study support the fact that different stressors on the body may alter the sex of the offspring. While in the present study the stressor is the excessive training load of soccer players, other events may lead to similar results. The bias in offspring sex ratio may have important implications for demography and population dynamics, as well as genetic trait inheritance. STUDY FUNDING/COMPETING INTEREST(S) There is no funding nor competing interests. TRIAL REGISTRATION NUMBER N/A


1999 ◽  
Vol 86 (1) ◽  
pp. 181-187 ◽  
Author(s):  
Ichiro Kuwahira ◽  
Uguri Kamiya ◽  
Tokuzen Iwamoto ◽  
Yoshihiro Moue ◽  
Tetsuya Urano ◽  
...  

The effect of intermittent hypoxia (IHx) on blood hemoglobin concentration ([Hb]) and the underlying mechanisms were studied in rats exposed to 10% O2, 1 h/day, for up to 5 wk. IHx protocols with longer daily hypoxic exposure show persistent polycythemia; however, it is unknown whether [Hb] increases transiently during hypoxia in protocols without polycythemia. Hypoxia produced a reversible [Hb] increase after 4 days of IHx but not in normoxic controls (NxC) or after shorter period of IHx. Splenectomy abolished the phenomenon. Plasma epinephrine and norepinephrine levels during hypoxia were comparable in IHx and NxC groups, but the epinephrine-induced [Hb] increase was larger in IHx. The α1- and α2-adrenoreceptor blockade (phentolamine) and α2-blockade (yohimbine) abolished the [Hb] increase of IHx rats. Conversely, α2-receptor stimulation (oxymetazoline) increased [Hb] during normoxia in IHx but not in NxC. In conclusion, this IHx protocol results in reversible [Hb] increases during hypoxia via splenic contraction mediated by increased α2-adrenoreceptor response. This may protect O2supply during hypoxia without the cardiovascular burden of polycythemia during normoxia.


Sign in / Sign up

Export Citation Format

Share Document