scholarly journals Identification of Loci Affecting Accumulation of Secondary Metabolites in Tomato Fruit of a Solanum lycopersicum × Solanum chmielewskii Introgression Line Population

2016 ◽  
Vol 7 ◽  
Author(s):  
Ana-Rosa Ballester ◽  
Yury Tikunov ◽  
Jos Molthoff ◽  
Silvana Grandillo ◽  
Marcela Viquez-Zamora ◽  
...  
2019 ◽  
Author(s):  
Richard M Sharpe ◽  
Luke Gustafson ◽  
Seanna Hewitt ◽  
Benjamin Kilian ◽  
James Crabb ◽  
...  

ABSTRACTEnhanced levels of antioxidants, phenolic compounds, carotenoids and vitamin C have been reported for several crops grown under organic fertilizer, albeit with yield penalties. As organic agricultural practices continue to grow and find favor it is critical to gain an understanding of the molecular underpinnings of the factors that limit the yields in organically farmed crops. Concomitant phytochemical and transcriptomic analysis was performed on mature fruit and leaf tissues derived from Solanum lycopersicum L. ‘Oregon Spring’ grown under organic and conventional fertilizer conditions to evaluate the following hypotheses. 1. Organic soil fertilizer management results in greater allocation of photosynthetically derived resources to the synthesis of secondary metabolites than to plant growth, and 2. Genes involved in changes in the accumulation of phytonutrients under organic fertilizer regime will exhibit differential expression, and that the growth under different fertilizer treatments will elicit a differential response from the tomato genome. Both these hypotheses were supported, suggesting an adjustment of the metabolic and genomic activity of the plant in response to different fertilizers. Organic fertilizer treatment showed an activation of photoinhibitory processes through differential activation of nitrogen transport and assimilation genes resulting in higher accumulation of phytonutrients. This information can be used to identify alleles for breeding crops that allow for efficient utilization of organic inputs.Significance statementOrganic fertilizer changes the expression of the tomato genome, induces photosynthetic stress which elicits higher production of secondary metabolites.


Author(s):  
Fufa Desta Dugassa

Tomato (Solanum Lycopersicum L. (or) Lycopersicon esculentum Mill.) is being a very nutritious and health protective food, are highly perishable nature. Its sensitivity to postharvest loss due to poor handling, diseases and physical injury limits its successful marketing. Therefore, simple technology is required to reduce the postharvest loss of this commodity. The use of edible coatings with bio-extracts appears to be a good alternative preservation technique to extend the mature tomato fruits. This study was, therefore, initiated to investigate the effect of using bio- extracts garlic bulba and capsicum incorporation with coating materials (maize starch and beeswax on physicochemical quality of tomato fruit stored at ambient conditions (temperature 15.5 to 20.2oC and relative humidity of 55.5 to 67.3%). The experiment was conducted using complete randomized design of two varieties (Fetane and Melkashola) and six treatments. The tomato fruits were coated by dipping into solution for 3 minutes. The treatments prepared were on coating solution of MGE( 9.5% maize starch with 0.5% garlic extract), MCE (9.5% maize starch with 0.5% capsicum extract), BCE (9.5% beewax mixed with 0.5% capsicum extract), BGE (9.5% beewax mixed with 0.5% garlic extract), 10% maize starch without bio-extract, 10% beewax without bio- extract and control. The treatment means were tested at significance level of P ≤ 0.05. The effectiveness of bio-extracts with coating materials on physicochemical quality of tomato fruits were evaluated at three days intervals for 30 days. There was a significance difference (P<0.05) between coated and uncoated fruits. All coatings delayed tomato ripening and improved the keeping quality parameters but best results were exhibited by 9.5% with 0.5% BCE followed by 9.5% with 0.5% MGE by maintaining the mature tomato fruit for 30 days. The study showed that the Fetane variety has maintained more quality attribute than Melkashola variety during storage.


2021 ◽  
Vol 159 ◽  
pp. 89-99
Author(s):  
Christoph H. Weinert ◽  
Frederike Sonntag ◽  
Björn Egert ◽  
Elke Pawelzik ◽  
Sabine E. Kulling ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1626
Author(s):  
Ibrahim Bayoumi Abdel-Farid ◽  
Marwa Radawy Marghany ◽  
Mohamed Mahmoud Rowezek ◽  
Mohamed Gabr Sheded

Seeds germination and seedlings growth of Cucumis sativus and Solanum lycopersicum were monitored in in vitro and in vivo experiments after application of different concentrations of NaCl (25, 50, 100 and 200 mM). Photosynthetic pigments content and the biochemical responses of C. sativus and S. lycopersicum were assessed. Salinity stress slightly delayed the seeds germination rate and significantly reduced the percentage of germination as well as shoot length under the highest salt concentration (200 mM) in cucumber. Furthermore, root length was decreased significantly in all treatments. Whereas, in tomato, a prominent delay in seeds germination rate, the germination percentage and seedlings growth (shoot and root lengths) were significantly influenced under all concentrations of NaCl. Fresh and dry weights were reduced prominently in tomato compared to cucumber. Photosynthetic pigments content was reduced but with pronounced decreasing in tomato compared to cucumber. Secondary metabolites profiling in both plants under stress was varied from tomato to cucumber. The content of saponins, proline and total antioxidant capacity was reduced more prominently in tomato as compared to cucumber. On the other hand, the content of phenolics and flavonoids was increased in both plants with pronounced increase in tomato particularly under the highest level of salinity stress. The metabolomic profiling in stressful plants was significantly influenced by salinity stress and some bioactive secondary metabolites was enhanced in both cucumber and tomato plants. The enhancement of secondary metabolites under salinity stress may explain the tolerance and sensitivity of cucumber and tomato under salinity stress. The metabolomic evaluation combined with multivariate data analysis revealed a similar mechanism of action of plants to mediate stress, with variant level of this response in both plant species. Based on these results, the effect of salinity stress on seeds germination, seedlings growth and metabolomic content of plants was discussed in terms of tolerance and sensitivity of plants to salinity stress.


2016 ◽  
Vol 143 ◽  
pp. 254-264 ◽  
Author(s):  
Yu Lu ◽  
Shigetaka Yasuda ◽  
Xingwen Li ◽  
Yoichiro Fukao ◽  
Takayuki Tohge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document