scholarly journals Exogenous Melatonin Alleviates Oxidative Damages and Protects Photosystem II in Maize Seedlings Under Drought Stress

2019 ◽  
Vol 10 ◽  
Author(s):  
Bo Huang ◽  
Yang-Er Chen ◽  
Yu-Qing Zhao ◽  
Chun-Bang Ding ◽  
Jin-Qiu Liao ◽  
...  
2021 ◽  
Author(s):  
Baozhu Li ◽  
Ruonan Fan ◽  
Guiling Sun ◽  
Ting Sun ◽  
Yanting Fan ◽  
...  

Abstract Background and aims As drought threatens the yield and quality of maize (Zea mays L.), it is important to dissect the molecular basis of maize drought tolerance. Flavonoids, participate in the scavenging of oxygen free radicals and alleviate stress-induced oxidative damages. This study aims to dissect the function of flavonoids in the improvement of maize drought tolerance. Methods Using far-infrared imaging screening, we previously isolated a drought overly insensitivity (doi) mutant from an ethyl methanesulfonate (EMS)-mutagenized maize library and designated it as doi57. In this study, we performed a physiological characterization and transcriptome profiling of doi57 in comparison to corresponding wild-type B73 under drought stress. Results Under drought stress, doi57 seedlings displayed lower leaf-surface temperature (LST), faster water loss, and better performance in growth than B73. Transcriptome analysis reveals that key genes involved in flavonoid biosynthesis are enriched among differentially expressed genes in doi57. In line with these results, more flavonols and less hydrogen peroxide (H2O2) were accumulated in guard cells of doi57 than in those of B73 with the decrease of soil water content (SWC). Moreover, the capacity determined from doi57 seedling extracts to scavenge oxygen free radicals was more effective than that of B73 under the drought treatment. Additionally, doi57 seedlings had higher photosynthetic rates, stomatal conductance, transpiration rates, and water use efficiency than B73 exposed to drought stress, resulting in high biomass and greater root/shoot ratios in doi57 mutant plants. Conclusion Flavonoids may facilitate maize seedling drought tolerance by lowering drought-induced oxidative damage as well regulating stomatal movement.


2016 ◽  
Vol 38 (6) ◽  
Author(s):  
Neslihan Saruhan Guler ◽  
Necla Pehlivan ◽  
Sengul Alpay Karaoglu ◽  
Sule Guzel ◽  
Arif Bozdeveci

Plant Science ◽  
2020 ◽  
Vol 292 ◽  
pp. 110380 ◽  
Author(s):  
Jian Guo ◽  
Chunhui Li ◽  
Xiaoqiong Zhang ◽  
Yongxiang Li ◽  
Dengfeng Zhang ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2828
Author(s):  
Md. Shakhawat Hossain ◽  
Jing Li ◽  
Ashim Sikdar ◽  
Mirza Hasanuzzaman ◽  
Ferdinand Uzizerimana ◽  
...  

Tartary buckwheat is one of the nutritious minor cereals and is grown in high-cold mountainous areas of arid and semi-arid zones where drought is a common phenomenon, potentially reducing the growth and yield. Melatonin, which is an amphiphilic low molecular weight compound, has been proven to exert significant effects in plants, under abiotic stresses, but its role in the Tartary buckwheat under drought stress remains unexplored. We evaluated the influence of melatonin supplementation on plant morphology and different physiological activities, to enhance tolerance to posed drought stress by scavenging reactive oxygen species (ROS) and alleviating lipid peroxidation. Drought stress decreased the plant growth and biomass production compared to the control. Drought also decreased Chl a, b, and the Fv/Fm ratio by 54%, 70%, and 8%, respectively, which was associated with the disorganized stomatal properties. Under drought stress, H2O2, O2•−, and malondialdehyde (MDA) contents increased by 2.30, 2.43, and 2.22-folds, respectively, which caused oxidative stress. In contrast, proline and soluble sugar content were increased by 84% and 39%, respectively. However, exogenous melatonin (100 µM) could improve plant growth by preventing ROS-induced oxidative damage by increasing photosynthesis, enzymatic antioxidants (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), secondary metabolites like phenylalanine ammonialyase, phenolics, and flavonoids, total antioxidant scavenging (free radical DPPH scavenging), and maintaining relative water content and osmoregulation substances under water stress. Therefore, our study suggested that exogenous melatonin could accelerate drought resistance by enhancing photosynthesis and antioxidant defense in Tartary buckwheat plants.


Sign in / Sign up

Export Citation Format

Share Document