scholarly journals Soil Application of Zinc Fertilizer Increases Maize Yield by Enhancing the Kernel Number and Kernel Weight of Inferior Grains

2020 ◽  
Vol 11 ◽  
Author(s):  
Dun-Yi Liu ◽  
Wei Zhang ◽  
Yu-Min Liu ◽  
Xin-Ping Chen ◽  
Chun-Qin Zou
1992 ◽  
Vol 72 (1) ◽  
pp. 27-33 ◽  
Author(s):  
R. T. Weiland

Recent studies have shown that pollen from a long-season maize (Zea mays L.) hybrid increased yield of a short-season hybrid by lengthening the effective grain-filling period, while the reciprocal cross did not alter this period or yield. This effect (metaxenia) was evaluated further in the studies reported here with hybrids of more diverse maturity and under both high and low N fertility. In the first year of this study (1989), sib- and cross-pollinations were made among B73Ht × Mo17 (B × 7) and two early-silking hybrids, LH59 × LH146 (L × 6) and Pioneer 3732 (3732) under N-sufficient (275 kg ha−1) and two lower N regimes (17 and 67 kg ha−1). Only a few significant effects were observed and these were noted at high N with one exception. With 3732 pollen, grain yield of B × 7 was decreased at 275 kg N ha−1, and physiological maturity occurred 3 d earlier. Yield of 3732 was increased by L × 6 pollen in comparison with B × 7 pollen. Kernel number and average kernel weight were not altered by pollen source. Pollen type did not affect yields under low N fertility, except for a reduction when B × 7 was pollinated by L × 6 at the 67-kg N ha−1 rate. In 1990, under N-sufficient fertility, B73Ht × LH156 (B × 6), a late-silking hybrid, and LH146 × LH82 (L × 2), an earlier hybrid, were sib- and cross-pollinated with B × 7 and 3732. The only significant effect observed was that L × 2 pollen increased B × 6 yield. Thus with the hybrids used, yields of early-season types were not altered by cross-pollination with long-season types. Previous results showing increased yields when 3732 was pollinated by B × 7 were not duplicated in either year, suggesting metaxenia effects are highly dependent upon environment.Key words: Metaxenia, xenia, cross-pollination, maize, yield, N levels


2021 ◽  
Vol 10 (19) ◽  
pp. 252-259
Author(s):  
Cengiz Yururdurmaz ◽  
Ali Turan

This study was carried out in 2019 in Kahramanmaraş University Field Crops Department to determine nitrogen and zinc fertilizer needs of maize plants in Kahramanmaraş Region. Experiments were conducted in split-plots design with 3 replications. Soil nitrogenous fertilizer (Urea) treatments were arranged as: 0 kg/da (N0), 15 kg/da (N15), 30 kg/da (N30). Foliar zinc treatments were arranged as 0 ppm (Zn0), 2500 ppm (Zn5), 5000 ppm (Zn10). Dekalp DKC6890 hybrid maize variety was used as the plant material of the experiments. Present findings revealed that nitrogen and zinc treatments had significant effects on the first cob height, cob length, cob thickness, number of rows per cob, number of kernels per cob and kernel yield of maize plants, but the effects of nitrogen and zinc treatments on plant height and thousand kernel weight were not found to be significant.


2022 ◽  
Vol 12 ◽  
Author(s):  
Federico H. Larrosa ◽  
Lucas Borrás

Altered stand density affects maize yields by producing changes in both numerical yield components, kernel number per plant (KNP), and kernel weight (KW). Kernel number is determined by the accumulation of ear biomass during the flowering period, whereas KW is determined by the sink potential established during flowering and the capacity of the plant to fulfill this potential during effective grain filling. Here, we tested if different short shading treatments during different stages around flowering can help discriminate genotypic differences in eco-physiological parameters relevant for maize stand density yield response and associated yield components. Our specific objectives were to: (i) identify hybrids with differential shading stress response, (ii) explore shading effects over eco-physiological parameters mechanistically related to KNP and KW, and (iii) test if shading stress can be used for detecting differential genotypic yield responses to stand density. The objectives were tested using four commercial maize hybrids. Results indicated that KNP was the yield component most related to yield changes across the different shading treatments, and that the specific shading imposed soon after anthesis generated the highest yield reductions. Hybrids less sensitive to shading stress were those that reduced their plant growth rate the least and the ones that accumulated more ear biomass during flowering. Genotype susceptibility to shading stress around flowering was correlated to stand density responses. This indicated that specific shading stress treatments are a useful tool to phenotype for differential stand density responses of commercial hybrids.


2020 ◽  
Vol 248 ◽  
pp. 107718 ◽  
Author(s):  
Li Zhang ◽  
Minfei Yan ◽  
Hongbing Li ◽  
Yuanyuan Ren ◽  
Kadambot HM Siddique ◽  
...  

1995 ◽  
Vol 75 (1) ◽  
pp. 55-60 ◽  
Author(s):  
T. N. McCaig ◽  
J. M. Clarke

Canadian durum wheat (Triticum turgidum L.) production is centred in the Brown and Dark Brown soil zones, areas of limited rainfall. For more than 50 yr, lines have been evaluated in the multi-location Durum Cooperative Test. Data from this test, over the period 1947–1992, were analyzed with the objectives of determining the advances that have been made within the Canada Western Amber Durum (CWAD) wheat class and comparing yield-related variables of recently registered cultivars with those of earlier cultivars. Canadian-developed cultivars have increased yields about 0.81% yr−1 relative to Hercules, or approximately 22.6 kg ha−1 yr−1. As kernel weight has remained unchanged, the genetic yield increases have resulted entirely from an increase in the number of kernels produced. Because kernel number is determined prior to, and during, anthesis, further yield increases may depend upon selection of genotypes that produce higher numbers of kernels, thereby increasing sink demand. While plant height and hectolitre weight have been decreasing over time, neither variable was significantly (P < 0.05) correlated with the yield increases that have taken place over the 29-yr period. The selection pressure toward shorter cultivars may have involved other agronomic advantages, such as decreased lodging. Days to maturity did not change significantly over time and was not correlated with yield. Key words:Triticum turgidum, kernel number, kernel weight, height, hectolitre weight


1997 ◽  
Vol 77 (2) ◽  
pp. 215-223 ◽  
Author(s):  
T. N. McCaig

Approximately 60% of Canadian durum wheat (Triticum turgidum L.) is produced in the semi-arid, Brown soil zone of southern Saskatchewan. The Durum Wheat Cooperative Test (DWCT) provides the means of evaluating potential new cultivars, and has been grown at Swift Current, located near the centre of the Brown soil zone in Saskatchewan, for more than 50 yr. Historical yield-related data from the DWCT were analyzed in conjunction with daily precipitation and maximum daily temperature (MaxDT) data with the objective of improving our understanding of the effects of these weather variables on durum wheat grown in this semi-arid region.The highest correlation between the weather variables and grain yield was during the period near the end of June through early July, approximately the time of anthesis. The correlation with kernel number m−2 (KNum) was maximum near the end of June, while the correlation with kernel weight was highest around the third week of July. The maximum effect of these weather factors in limiting yield in the Brown soil zone was through an impact on KNum around anthesis. Hectolitre weight and time-to-maturi-ty appeared to be influenced mainly by the weather in July, while crop height was determined by the weather near the end of June. An analysis which examined cumulative heat-units above threshold MaxDT of 20, 24, 28 and 32 °C indicated that temperatures >24 °C may be detrimental during early June although high temperatures are less common in June than in July. Yield was also negatively impacted by temperatures >20 °C during the first 3 wk of July.Future yield gains in this semi-arid region may be dependent upon the development of cultivars which are more tolerant of drought and high-temperature stress at anthesis. Key words: Triticum turgidum, kernel number, kernel weight, height, maturity, hectolitre weight


2018 ◽  
Vol 24 (6) ◽  
pp. 1-9
Author(s):  
Benette Yaw Osei ◽  
Kofi Agyarko ◽  
Emmanuel Kwasi Aseidu ◽  
Martha Agyiri ◽  
Kwabena Kyere ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Eric T. Winans ◽  
Tryston A. Beyrer ◽  
Frederick E. Below

Continued yield increases of maize (Zea mays L.) will require higher planting populations, and enhancement of other agronomic inputs could alleviate density-induced stress. Row spacing, plant population, P-S-Zn fertility, K-B fertility, N fertility, and foliar protection were evaluated for their individual and cumulative impacts on the productivity of maize in a maize-soybean [Glycine max (L.) Merr.] rotation. An incomplete factorial design with these agronomic factors in both 0.76 and 0.51 m row widths was implemented for 13 trials in Illinois, United States, from 2014 to 2018. The agronomic treatments were compared to two controls: enhanced and standard, comprising all the factors applied at the enhanced or standard level, respectively. The 0.51 m enhanced management control yielded 3.3 Mg ha–1 (1.8–4.6 Mg ha–1 across the environments) more grain (25%) than the 0.76 m standard management control, demonstrating the apparent yield gap between traditional farm practices and attainable yield through enhanced agronomic management. Narrow rows and the combination of P-S-Zn and K-B fertility were the factors that provided the most significant yield increases over the standard control. Increasing plant population from 79,000 to 109,000 plants ha–1 reduced the yield gap when all other inputs were applied at the enhanced level. However, increasing plant population alone did not increase yield when no other factors were enhanced. Some agronomic factors, such as narrow rows and availability of plant nutrition, become more critical with increasing plant population when density-induced stress is more significant. Changes in yield were dependent upon changes in kernel number. Kernel weight was the heaviest when all the management factors were applied at the enhanced level while only planting 79,000 plants ha–1. Conversely, kernel weight was the lightest when increasing population to 109,000 plants ha–1 while all other factors were applied at the standard level. The yield contribution of each factor was generally greater when applied in combination with all other enhanced factors than when added individually to the standard input system. Additionally, the full value of high-input agronomic management was only realized when matched with greater plant density.


1971 ◽  
Vol 13 (4) ◽  
pp. 816-821
Author(s):  
Sadeque U. Ahmed

The recipient variety 'Chinese Spring', chromosome substitution lines 1B of Timstein' and 4A of 'Thatcher', and donor varieties Timstein and Thatcher were studied with respect to six quantitative characters, viz. earliness, plant height, tiller number per plant, kernel number per spike, 1000-kernel weight and total grain yield per plant. Heterosis was observed for all characters; however, the degree and direction of heterosis varied for different characters and for different hybrid populations. Evidence for significant improvement in kernel weight and total grain yield per plant combined with early heading and short plant height were obtained. Evidence was obtained indicating that substitution lines may be effective breeding materials in common wheat (Triticum aestivum L.) breeding programs.


2008 ◽  
Vol 105 (3) ◽  
pp. 172-181 ◽  
Author(s):  
Martín Uribelarrea ◽  
Jorgelina Cárcova ◽  
Lucas Borrás ◽  
María E. Otegui

Sign in / Sign up

Export Citation Format

Share Document