scholarly journals Characterization of Three Fusarium graminearum Effectors and Their Roles During Fusarium Head Blight

2020 ◽  
Vol 11 ◽  
Author(s):  
Guixia Hao ◽  
Susan McCormick ◽  
Thomas Usgaard ◽  
Helene Tiley ◽  
Martha M. Vaughan

Fusarium graminearum causes Fusarium head blight (FHB) on wheat, barley, and other grains. During infection, F. graminearum produces deoxynivalenol (DON), which contaminates grain and functions as a virulence factor to promote FHB spread throughout the wheat head. F. graminearum secretes hundreds of putative effectors, which can interfere with plant immunity to promote disease development. However, the function of most of these putative effectors remains unknown. In this study, we investigated the expression profiles of 23 F. graminearum effector-coding genes during the early stage of wheat head infection. Gene expression analyses revealed that three effectors, FGSG_01831, FGSG_03599, and FGSG_12160, respectively, were highly induced in both a FHB susceptible and a moderately resistant variety. We generated deletion mutants for these effector genes and performed FHB virulence assays on wheat head using point and dip inoculations to evaluate FHB spread and initial infection. No statistically significant difference in FHB spread was observed in the deletion mutants. However, deletion mutants Δ01831 displayed a significant reduction in initial infection, and thus resulted in less DON contamination. To investigate the potential mechanisms involved, these three effectors were transiently expressed in Nicotiana benthamiana leaves. N. benthamiana leaves expressing these individual effectors had significantly reduced production of reactive oxygen species induced by chitin, but not by flg22. Furthermore, FGSG_01831 and FGSG_03599 markedly suppressed Bax-induced cell death when co-expressed with Bax in N. benthamiana leaves. Our study provides new insights into the functions of these effectors and suggests they play collective or redundant roles that likely ensure the successful plant infection.

2014 ◽  
Vol 104 (11) ◽  
pp. 1201-1207 ◽  
Author(s):  
Luca Sella ◽  
Katia Gazzetti ◽  
Carla Castiglioni ◽  
Wilhelm Schäfer ◽  
Francesco Favaron

Fusarium graminearum is a toxigenic fungal pathogen that causes Fusarium head blight (FHB) and crown rot on cereal crops worldwide. This fungus also causes damping-off and crown and root rots at the early stage of crop development in soybean cultivated in North and South America. Several F. graminearum genes were investigated for their contribution to FHB in cereals but no inherent study is reported for the dicotyledonous soybean host. In this study we determined the disease severity on soybean seedlings of five single gene disrupted mutants of F. graminearum, previously characterized in wheat spike infection. Three of these mutants are impaired on a specific function as the production of deoxynivalenol (DON, Δtri5), lipase (ΔFgl1), and xylanase (Δxyl03624), while the remaining two are MAP kinase mutants (ΔFgOS-2, Δgpmk1), which are altered in signaling pathways. The mutants that were reduced in virulence (Δtri5, ΔFgl1, and ΔFgOS-2) or are avirulent (Δgpmk1) on wheat were correspondently less virulent or avirulent in soybean seedlings, as shown by the extension of lesions and seedling lengths. The Δxyl03624 mutant was as virulent as the wild type mirroring the behavior observed in wheat. However, a different ranking of symptom severity occurred in the two hosts: the ΔFgOS-2 mutant, that infects wheat spikelets similarly to Δtri5 and ΔFgl1 mutants, provided much reduced symptoms in soybean. Differently from the other mutants, we observed that the ΔFgOS-2 mutant was several fold more sensitive to the glyceollin phytoalexin suggesting that its reduced virulence may be due to its hypersensitivity to this phytoalexin. In conclusion, lipase and DON seem important for full disease symptom development in soybean seedlings, OS-2 and Gpmk1 MAP kinases are essential for virulence, and OS-2 is involved in conferring resistance to the soybean phytoalexin.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 929-937 ◽  
Author(s):  
Yabing Duan ◽  
Xian Tao ◽  
Huahua Zhao ◽  
Xuemei Xiao ◽  
Meixia Li ◽  
...  

Fusarium graminearum species complex (FGSC), causing Fusarium head blight (FHB) of wheat, has species-specific geographical distributions in wheat-growing regions. In recent years, benzimidazole resistance of FHB pathogens has been largely widespread in China. Although the demethylation inhibitor fungicide metconazole has been used for FHB control in some countries, no information about metconazole sensitivity of Chinese FHB pathogen populations and efficacy of metconazole in FHB control in China is available. In this study, the sensitivity of FGSC to metconazole was measured with 32 carbendazim-sensitive strains and 35 carbendazim-resistant strains based on mycelial growth. The 50% effective concentration values of 67 strains were normally distributed and ranged from 0.0209 to 0.0838 μg ml−1, with a mean of 0.0481 ± 0.0134 μg ml−1. No significant difference in metconazole sensitivity was observed between carbendazim-sensitive and -resistant populations. An interactive effect of metconazole and phenamacril, a novel cyanoacrilate fungicide approved in China against Fusarium spp., in inhibiting mycelial growth showed an additive interaction at different ratios. Furthermore, field trials to evaluate the effect of metconazole and metconazole + phenamacril treatments in FHB control, deoxynivalenol (DON) production, and grain yields were performed. Compared with the fungicides carbendazim and phenamacril currently used in China, metconazole exhibits a better efficacy for FHB control, DON production, and grain yields, and dramatically reduces use dosages of chemical compounds in the field. The mixture of metconazole and phenamacril at ratios of 2:3 and 1:2 showed the greatest efficacy for FHB control, DON production, and grain yields among all the fungicide treatments but its use dosages were higher in comparison with metconazole alone. In addition, FHB control, grain yields, and DON levels were significantly correlated with each other, showing that visual disease indices can be used as an indicator of grain yields and DON contamination. Meanwhile, the frequency of carbendazim-resistant alleles in F. graminearum populations was dramatically reduced after metconazole and phenamacril alone and the mixture of metconazole and phenamacril applications, indicating that metconazole and a mixture of metconazole and phenamacril can be used for carbendazim resistance management of FHB in wheat. Overall, the findings of this study provide important data for resistance management of FHB and reducing DON contamination in wheat grains.


Author(s):  
Juho Hautsalo ◽  
Satu Latvala ◽  
Outi Manninen ◽  
Minna Haapalainen ◽  
Asko Hannukkala ◽  
...  

Abstract Cultivar resistance is essential for the management of Fusarium head blight (FHB) disease in oat production. However, the breeders lack methods suitable for phenotyping disease resistance and resistance sources. In this paper we compared two oat genotypes, a rejected variety BOR31 and a landrace VIR7766, with four different traits that could reflect resistance to FHB in a greenhouse environment. Spray and point inoculations were used to inoculate Fusarium graminearum into flowering oat plants. When spray-inoculated, VIR7766 was significantly more resistant against the initial infection than BOR31, measured by the number of Fusarium-infected kernels and by DON accumulation. In the point-inoculated oats, the loss of fresh weight in the inoculated spikelet correlated well with the increasing F. graminearum biomass in the spikelet, measured six days after inoculation. However, no difference in the growth of the fungus was observed between the tested oat genotypes by point inoculation. We speculate that once the infection is established, the ability of the oat plant to resist the spread of the infection within a spikelet is low in the genotypes studied, although oat, in general, due to its panicle structure, is considered to have a high resistance against Fusarium infection.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhengxi Sun ◽  
Yi Hu ◽  
Yilei Zhou ◽  
Ning Jiang ◽  
Sijia Hu ◽  
...  

Abstract Background Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating fungal disease of wheat. The mechanism underlying F. graminearum-wheat interaction remains largely unknown. tRNA-derived fragments (tRFs) are RNase-dependent small RNAs derived from tRNAs, and they have not been reported in wheat yet, and whether tRFs are involved in wheat-F. graminearum interactions remains unknown. Results Herein, small RNAs from the spikelets inoculated with F. graminearum and mock from an FHB-susceptible variety Chinese Spring (CS) and an FHB-resistant variety Sumai3 (SM) were sequenced respectively. A total of 1249 putative tRFs were identified, in which 15 tRFs was CS-specific and 12 SM-specific. Compared with mock inoculation, 39 tRFs were significantly up-regulated across both wheat varieties after F. graminearum challenge and only nine tRFs were significantly down-regulated. tRFGlu, tRFLys and tRFThr were dramatically induced by F. graminearum infection, with significantly higher fold changes in CS than those in SM. The expression patterns of the three highly induced tRFs were further validated by stem-loop qRT-PCR. The accumulation of tRFs were closely related to ribonucleases T2 family members, which were induced by F. graminearum challenge. The tRFs’ targets in host were predicted and were validated by RNA sequencing. Conclusion Integrative analysis of the differentially expressed tRFs and their candidate targets indicated that tRFGlu, tRFLys and tRFThr might negatively regulate wheat resistance to FHB. Our results unvealed the potential roles of tRFs in wheat-F. graminearum interactions.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
Gaetano Bentivenga ◽  
Alfio Spina ◽  
Karim Ammar ◽  
Maria Allegra ◽  
Santa Olga Cacciola

In 2009, a set of 35 cultivars of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) of Italian origin was screened for fusarium head blight (FHB) susceptibility at CIMMYT (Mexico) and in the 2019–20 cropping season, 16 of these cultivars, which had been included in the Italian National Plant Variety Register, were tested again in southern and northern Italy. Wheat cultivars were artificially inoculated during anthesis with a conidial suspension of Fusarium graminearum sensu lato using a standard spray inoculation method. Inoculum was a mixture of mono-conidial isolates sourced in the same areas where the trials were performed. Isolates had been characterized on the basis of morphological characteristics and by DNA PCR amplification using a specific primer set and then selected for their virulence and ability to produce mycotoxins. The susceptibility to FHB was rated on the basis of the disease severity, disease incidence and FHB index. Almost all of the tested cultivars were susceptible or very susceptible to FHB with the only exception of “Duprì”, “Tiziana” and “Dylan” which proved to be moderately susceptible. The susceptibility to FHB was inversely correlated with the plant height and flowering biology, the tall and the late heading cultivars being less susceptible.


2008 ◽  
Vol 88 (6) ◽  
pp. 1087-1089 ◽  
Author(s):  
Stephen N Wegulo ◽  
Floyd E Dowell

Fusarium head blight (scab) of wheat, caused by Fusarium graminearum, often results in shriveled and/or discolored kernels, which are referred to as Fusarium-damaged kernels (FDK). FDK is a major grain grading factor and therefore is routinely determined for purposes of quality assurance. Measurement of FDK is usually done visually. Visual sorting can be laborious and is subject to inconsistencies resulting from variability in intra-rater repeatability and/or inter-rater reliability. The ability of a single-kernel near-infrared (SKNIR) system to detect FDK was evaluated by comparing FDK sorted by the system to FDK sorted visually. Visual sorting was strongly correlated with sorting by the SKNIR system (0.89 ≤ r ≤ 0.91); however, the SKNIR system had a wider range of FDK detection and was more consistent. Compared with the SKNIR system, visual raters overestimated FDK in samples with a low percentage of Fusarium-damaged grain and underestimated FDK in samples with a high percentage of Fusarium-damaged grain. Key words: Wheat, Fusarium head blight, Fusarium-damaged kernels, single-kernel near-infrared


2012 ◽  
Vol 33 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Johann Leplat ◽  
Hanna Friberg ◽  
Muhammad Abid ◽  
Christian Steinberg

2020 ◽  
Vol 13 (2) ◽  
pp. 235-246
Author(s):  
W.Q. Shi ◽  
L.B. Xiang ◽  
D.Z. Yu ◽  
S.J. Gong ◽  
L.J. Yang

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss in wheat and barley production. Integrated pest management (IPM) is required to control this disease and biofungicides, such as tetramycin, could be a novel addition to IPM strategies. The current study investigated in vitro tetramycin toxicity in Fusarium graminearum and evaluated its effectiveness for the control of Fusarium head blight FHB. Tetramycin was shown to affect three key aspects of Fusarium pathogenicity: spore germination, mycelium growth and deoxynivalenol (DON) production. The in vitro results indicated that tetramycin had strong inhibitory activity on the mycelial growth and spore germination. Field trials indicated that tetramycin treatment resulted in a significant reduction in both the FHB disease index and the level of DON accumulation. The reduced DON content in harvested grain was correlated with the amount of Tri5 mRNA determined by qRT-PCR. Synergistic effects between tetramycin and metconazole, in both the in vitro and field experiments were found. Tetramycin could provide an alternative option to control FHB.


Sign in / Sign up

Export Citation Format

Share Document