scholarly journals The Extracellular Superoxide Dismutase Sod5 From Fusarium oxysporum Is Localized in Response to External Stimuli and Contributes to Fungal Pathogenicity

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiang Wang ◽  
Ambika Pokhrel ◽  
Jeffrey J. Coleman

Reactive oxygen species (ROS) produced by hosts serve as a general defense mechanism against various pathogens. At the interaction site between the host and pathogen, host cells rapidly accumulate high concentrations of ROS, called the oxidative burst, that damage and kill the invading microbes. However, successful pathogens usually survive in a high ROS environment and have evolved strategies to overcome these detrimental effects. Here we characterized the biological function of the extracellular superoxide dismutase (SOD) FoSod5 from Fusarium oxysporum f. sp. vasinfectum. FoSOD5 is strongly up-regulated during infection of cotton, and a ΔFoSOD5 mutant was significantly reduced in virulence on cotton. Purified 6 × His-FoSod5 could significantly inhibit the reduction of NBT and WST-1, indicating that FoSod5 was a functional SOD protein. Based on CRISPR/Cas9 technology, several different FoSod5 variants were generated and used to assess the secretion, expression, and subcellular localization of FoSod5 in F. oxysporum. The subcellular localization of FoSod5 is altered under different environmental conditions. During normal growth conditions, FoSod5 was primarily localized to the phialides; however, in a nutrient-limited environment, FoSod5 was localized to a wide array of fungal structures including the septum and cell wall. FoSod5 is an alkaline-induced glycosylphosphatidylinositol (GPI) protein and the GPI anchor was required for proper protein subcellular localization. The multiple mechanisms fungi utilize to tolerate the oxidative burst is indicative of the importance of this plant defense response; however, the presence of a conserved extracellular SOD in many phytopathogenic fungi suggests tolerance to ROS is initiated prior to the ROS entering the fungal cell.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tiina Kelkka ◽  
Juha Petteri Laurila ◽  
Outi Sareila ◽  
Peter Olofsson ◽  
Mikko Olavi Laukkanen ◽  
...  

Extracellular superoxide dismutase (SOD3), an enzyme mediating dismutation of superoxide into hydrogen peroxide, has been shown to reduce inflammation by inhibiting macrophage migration into injured tissues. In inflamed tissues, superoxide is produced by the phagocytic NOX2 complex, which consists of the catalytic subunit NOX2 and several regulatory subunits (e.g., NCF1). To analyze whether SOD3 can regulate inflammation in the absence of functional NOX2 complex, we injected an adenoviral vector overexpressing SOD3 directly into the arthritic paws ofNcf1*/*mice with collagen-induced arthritis. SOD3 reduced arthritis severity in both oxidative burst-deficientNcf1*/*mice and also in wild-type mice. The NOX2 complex independent anti-inflammatory effect of SOD3 was further characterized in peritonitis, and SOD3 was found to reduce macrophage infiltration independently of NOX2 complex functionality. We conclude that the SOD3-mediated anti-inflammatory effect on arthritis and peritonitis operates independently of NOX2 complex derived oxidative burst.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 697
Author(s):  
Juan Mao ◽  
Wenxin Li ◽  
Jing Liu ◽  
Jianming Li

The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.


2002 ◽  
Vol 278 (9) ◽  
pp. 6824-6830 ◽  
Author(s):  
Violeta Serra ◽  
Thomas von Zglinicki ◽  
Mario Lorenz ◽  
Gabriele Saretzki

2002 ◽  
Vol 36 (7) ◽  
pp. 755-758 ◽  
Author(s):  
Lena M. Jonsson ◽  
Daryl D. Rees ◽  
Thomas Edlund ◽  
Stefan L. Marklund

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Francesca Cammarota ◽  
Gabriella de Vita ◽  
Marco Salvatore ◽  
Mikko O. Laukkanen

Extracellular superoxide dismutase (SOD3) is a secreted enzyme that uses superoxide anion as a substrate in a dismutase reaction that results in the formation of hydrogen peroxide. Both of these reactive oxygen species affect growth signaling in cells. Although SOD3 has growth-supporting characteristics, the expression ofSOD3is downregulated in epithelial cancer cells. In the current work, we studied the mechanisms regulatingSOD3expressionin vitrousing thyroid cell models representing different stages of thyroid cancer. We demonstrate that a low level of RAS activation increasesSOD3mRNA synthesis that then gradually decreases with increasing levels of RAS activation and the decreasing degree of differentiation of the cancer cells. Our data indicate thatSOD3regulation can be divided into two classes. The first class involves RAS–driven reversible regulation ofSOD3expression that can be mediated by the following mechanisms: RAS GTPase regulatory genes that are responsible forSOD3self-regulation; RAS-stimulated p38 MAPK activation; and RAS-activated increased expression of themir21microRNA, which inversely correlates withsod3mRNA expression. The second class involves permanent silencing ofSOD3mediated by epigenetic DNA methylation in cells that represent more advanced cancers. Therefore, the work suggests thatSOD3belongs to the group ofrasoncogene-silenced genes.


1989 ◽  
Vol 9 (6) ◽  
pp. 2615-2626 ◽  
Author(s):  
E Hickey ◽  
S E Brandon ◽  
G Smale ◽  
D Lloyd ◽  
L A Weber

Vertebrate cells synthesize two forms of the 82- to 90-kilodalton heat shock protein that are encoded by distinct gene families. In HeLa cells, both proteins (hsp89 alpha and hsp89 beta) are abundant under normal growth conditions and are synthesized at increased rates in response to heat stress. Only the larger form, hsp89 alpha, is induced by the adenovirus E1A gene product (M. C. Simon, K. Kitchener, H. T. Kao, E. Hickey, L. Weber, R. Voellmy, N. Heintz, and J. R. Nevins, Mol. Cell. Biol. 7:2884-2890, 1987). We have isolated a human hsp89 alpha gene that shows complete sequence identity with heat- and E1A-inducible cDNA used as a hybridization probe. The 5'-flanking region contained overlapping and inverted consensus heat shock control elements that can confer heat-inducible expression on a beta-globin reporter gene. The gene contained 10 intervening sequences. The first intron was located adjacent to the translation start codon, an arrangement also found in the Drosophila hsp82 gene. The spliced mRNA sequence contained a single open reading frame encoding an 84,564-dalton polypeptide showing high homology with the hsp82 to hsp90 proteins of other organisms. The deduced hsp89 alpha protein sequence differed from the human hsp89 beta sequence reported elsewhere (N. F. Rebbe, J. Ware, R. M. Bertina, P. Modrich, and D. W. Stafford (Gene 53:235-245, 1987) in at least 99 out of the 732 amino acids. Transcription of the hsp89 alpha gene was induced by serum during normal cell growth, but expression did not appear to be restricted to a particular stage of the cell cycle. hsp89 alpha mRNA was considerably more stable than the mRNA encoding hsp70, which can account for the higher constitutive rate of hsp89 synthesis in unstressed cells.


2003 ◽  
Vol 37 (8) ◽  
pp. 823-827 ◽  
Author(s):  
Tomomi Ookawara ◽  
Hironobu Eguchi ◽  
Takako Kizaki ◽  
Chitose Nakao ◽  
Yuzo Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document