scholarly journals Betaine Aldehyde Dehydrogenase (BADH) vs. Flavodoxin (Fld): Two Important Genes for Enhancing Plants Stress Tolerance and Productivity

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohsen Niazian ◽  
Seyed Ahmad Sadat-Noori ◽  
Masoud Tohidfar ◽  
Seyed Mohammad Mahdi Mortazavian ◽  
Paolo Sabbatini

Abiotic stresses, mainly salinity and drought, are the most important environmental threats that constrain worldwide food security by hampering plant growth and productivity. Plants cope with the adverse effects of these stresses by implementing a series of morpho-physio-biochemical adaptation mechanisms. Accumulating effective osmo-protectants, such as proline and glycine betaine (GB), is one of the important plant stress tolerance strategies. These osmolytes can trigger plant stress tolerance mechanisms, which include stress signal transduction, activating resistance genes, increasing levels of enzymatic and non-enzymatic antioxidants, protecting cell osmotic pressure, enhancing cell membrane integrity, as well as protecting their photosynthetic apparatus, especially the photosystem II (PSII) complex. Genetic engineering, as one of the most important plant biotechnology methods, helps to expedite the development of stress-tolerant plants by introducing the key tolerance genes involved in the biosynthetic pathways of osmolytes into plants. Betaine aldehyde dehydrogenase (BADH) is one of the important genes involved in the biosynthetic pathway of GB, and its introduction has led to an increased tolerance to a variety of abiotic stresses in different plant species. Replacing down-regulated ferredoxin at the acceptor side of photosystem I (PSI) with its isofunctional counterpart electron carrier (flavodoxin) is another applicable strategy to strengthen the photosynthetic apparatus of plants under stressful conditions. Heterologous expression of microbially-sourced flavodoxin (Fld) in higher plants compensates for the deficiency of ferredoxin expression and enhances their stress tolerance. BADH and Fld are multifunctional transgenes that increase the stress tolerance of different plant species and maintain their production under stressful situations by protecting and enhancing their photosynthetic apparatus. In addition to increasing stress tolerance, both BADH and Fld genes can improve the productivity, symbiotic performance, and longevity of plants. Because of the multigenic and complex nature of abiotic stresses, the concomitant delivery of BADH and Fld transgenes can lead to more satisfying results in desired plants, as these two genes enhance plant stress tolerance through different mechanisms, and their cumulative effect can be much more beneficial than their individual ones. The importance of BADH and Fld genes in enhancing plant productivity under stress conditions has been discussed in detail in the present review.

2014 ◽  
Vol 42 (2) ◽  
pp. 485-490 ◽  
Author(s):  
Charanpreet Kaur ◽  
Ajit Ghosh ◽  
Ashwani Pareek ◽  
Sudhir K. Sopory ◽  
Sneh L. Singla-Pareek

The glyoxalase pathway is required for detoxification of cytotoxic metabolite MG (methylglyoxal) that would otherwise increase to lethal concentrations under adverse environmental conditions. Since its discovery 100 years ago, several roles have been assigned to glyoxalases, but, in plants, their involvement in stress response and tolerance is the most widely accepted role. The plant glyoxalases have emerged as multigene family and this expansion is considered to be important from the perspective of maintaining a robust defence machinery in these sessile species. Glyoxalases are known to be differentially regulated under stress conditions and their overexpression in plants confers tolerance to multiple abiotic stresses. In the present article, we review the importance of glyoxalases in plants, discussing possible roles with emphasis on involvement of the glyoxalase pathway in plant stress tolerance.


2021 ◽  
Author(s):  
Cisse El Hadji Malick ◽  
Miao Ling-Feng ◽  
Li Da-Dong ◽  
Yang Fan

Metabolic engineering in plant can be describe as a tool using molecular biological technologies which promotes enzymatic reactions that can enhance the biosynthesis of existing compounds such as glycine betaine (GB) in plant species that are able to accumulate GB, or produce news compounds like GB in non-accumulators plants. Moreover we can include to these definition, the mediation in the degradation of diverse compounds in plant organism. For decades, one of the most popular ideas in metabolic engineering literature is the idea that the improvement of gly betaine or melatonin accumulation in plant under environmental stress can be the main window to ameliorate stress tolerance in diverse plant species. A challenging problem in this domain is the integration of different molecular technologies like transgenesis, enzyme kinetics, promoter analysis, biochemistry and genetics, protein sorting, cloning or comparative physiology to reach that objective. A large number of approaches have been developed over the last few decades in metabolic engineering to overcome this problem. Therefore, we examine some previous work and propose some understanding about the use of metabolic engineering in plant stress tolerance. Moreover, this chapter will focus on melatonin (Hormone) and gly betaine (Osmolyte) biosynthesis pathways in engineering stress resistance.


2018 ◽  
Vol 19 (11) ◽  
pp. 1114-1123 ◽  
Author(s):  
Anjali Khajuria ◽  
Nandni Sharma ◽  
Renu Bhardwaj ◽  
Puja Ohri

Author(s):  
Ramses Cruz-Valencia ◽  
Aldo A. Arvizu-Flores ◽  
Jesús A. Rosas-Rodríguez ◽  
Elisa M. Valenzuela-Soto

1954 ◽  
Vol 209 (2) ◽  
pp. 511-523 ◽  
Author(s):  
H.A. Rothschild ◽  
E.S. Guzman Barron

1994 ◽  
Vol 6 (5) ◽  
pp. 749-758 ◽  
Author(s):  
Kjell-Ove Holmstrom ◽  
Bjorn Welin ◽  
Abul Mandal ◽  
Ingileif Kristiansdottir ◽  
Teemu H. Teeri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document