scholarly journals Insights into Metabolic Engineering of the Biosynthesis of Glycine Betaine and Melatonin to Improve Plant Abiotic Stress Tolerance

2021 ◽  
Author(s):  
Cisse El Hadji Malick ◽  
Miao Ling-Feng ◽  
Li Da-Dong ◽  
Yang Fan

Metabolic engineering in plant can be describe as a tool using molecular biological technologies which promotes enzymatic reactions that can enhance the biosynthesis of existing compounds such as glycine betaine (GB) in plant species that are able to accumulate GB, or produce news compounds like GB in non-accumulators plants. Moreover we can include to these definition, the mediation in the degradation of diverse compounds in plant organism. For decades, one of the most popular ideas in metabolic engineering literature is the idea that the improvement of gly betaine or melatonin accumulation in plant under environmental stress can be the main window to ameliorate stress tolerance in diverse plant species. A challenging problem in this domain is the integration of different molecular technologies like transgenesis, enzyme kinetics, promoter analysis, biochemistry and genetics, protein sorting, cloning or comparative physiology to reach that objective. A large number of approaches have been developed over the last few decades in metabolic engineering to overcome this problem. Therefore, we examine some previous work and propose some understanding about the use of metabolic engineering in plant stress tolerance. Moreover, this chapter will focus on melatonin (Hormone) and gly betaine (Osmolyte) biosynthesis pathways in engineering stress resistance.

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohsen Niazian ◽  
Seyed Ahmad Sadat-Noori ◽  
Masoud Tohidfar ◽  
Seyed Mohammad Mahdi Mortazavian ◽  
Paolo Sabbatini

Abiotic stresses, mainly salinity and drought, are the most important environmental threats that constrain worldwide food security by hampering plant growth and productivity. Plants cope with the adverse effects of these stresses by implementing a series of morpho-physio-biochemical adaptation mechanisms. Accumulating effective osmo-protectants, such as proline and glycine betaine (GB), is one of the important plant stress tolerance strategies. These osmolytes can trigger plant stress tolerance mechanisms, which include stress signal transduction, activating resistance genes, increasing levels of enzymatic and non-enzymatic antioxidants, protecting cell osmotic pressure, enhancing cell membrane integrity, as well as protecting their photosynthetic apparatus, especially the photosystem II (PSII) complex. Genetic engineering, as one of the most important plant biotechnology methods, helps to expedite the development of stress-tolerant plants by introducing the key tolerance genes involved in the biosynthetic pathways of osmolytes into plants. Betaine aldehyde dehydrogenase (BADH) is one of the important genes involved in the biosynthetic pathway of GB, and its introduction has led to an increased tolerance to a variety of abiotic stresses in different plant species. Replacing down-regulated ferredoxin at the acceptor side of photosystem I (PSI) with its isofunctional counterpart electron carrier (flavodoxin) is another applicable strategy to strengthen the photosynthetic apparatus of plants under stressful conditions. Heterologous expression of microbially-sourced flavodoxin (Fld) in higher plants compensates for the deficiency of ferredoxin expression and enhances their stress tolerance. BADH and Fld are multifunctional transgenes that increase the stress tolerance of different plant species and maintain their production under stressful situations by protecting and enhancing their photosynthetic apparatus. In addition to increasing stress tolerance, both BADH and Fld genes can improve the productivity, symbiotic performance, and longevity of plants. Because of the multigenic and complex nature of abiotic stresses, the concomitant delivery of BADH and Fld transgenes can lead to more satisfying results in desired plants, as these two genes enhance plant stress tolerance through different mechanisms, and their cumulative effect can be much more beneficial than their individual ones. The importance of BADH and Fld genes in enhancing plant productivity under stress conditions has been discussed in detail in the present review.


2001 ◽  
Vol 79 (8) ◽  
pp. 897-904 ◽  
Author(s):  
Deborah Lorenzin ◽  
Candace Webb ◽  
Peter S Summers ◽  
Elizabeth A Weretilnyk

S-adenosyl-L-methionine dependent phospho-base N-methyltransferases are involved in the sequential methylations of phosphoethanolamine [Formula: see text] phosphomethylethanolamine [Formula: see text] phosphodimethylethanolamine [Formula: see text] phosphocholine. Phosphocholine is a precursor for the ubiquitous phospholipid phosphatidylcholine and for free choline, which can be oxidized to produce the osmoprotectant glycine betaine. Despite the importance of these enzymes to growth and stress tolerance, their activities have been studied in comparatively few plant species. Phospho-base N-methylating activities were assayed in leaf extracts prepared from 17 diverse plant species. All plants tested can perform the first step ( N-methylation of phosphoethanolamine) with in vitro activity rates varying from 0.13 nmol·min–1·g–1 fresh weight for soybean (Glycine max (L.) Merr.) and pea (Pisum sativum L.) to 25 nmol·min–1·g–1 fresh weight for cotton (Gossypium hirsutum L.). Of the plant species surveyed, only soybean and pea showed no capacity to perform the two subsequent N-methylation steps. Exposing plants to prolonged dark periods led to decreased phosphoethanolamine N-methylating activity relative to light-exposed controls with the extent of decrease varying among the species from 30% (Limonium perezii (Stapf) F.T. Hubb) to over 90% (Spinacia oleracea L., Beta vulgaris L., and Amaranthus caudatus L.). Thus, light-responsive properties and levels of phosphobase methyltransferase activities vary among plants with a trend towards higher activities being found in plants that accumulate glycine betaine.Key words: glycine betaine, choline, phosphatidylcholine, phosphocholine.


2018 ◽  
Vol 19 (11) ◽  
pp. 1114-1123 ◽  
Author(s):  
Anjali Khajuria ◽  
Nandni Sharma ◽  
Renu Bhardwaj ◽  
Puja Ohri

2020 ◽  
Vol 8 (7) ◽  
pp. 1056
Author(s):  
Cody Molnar ◽  
Ekaterina Nikolaeva ◽  
Seonghwan Kim ◽  
Tracey Olson ◽  
Devin Bily ◽  
...  

The increasing movement of exotic pathogens calls for systematic surveillance so that newly introduced pathogens can be recognized and dealt with early. A resource crucial for recognizing such pathogens is knowledge about the spatial and temporal diversity of endemic pathogens. Here, we report an effort to build this resource for Pennsylvania (PA) by characterizing the identity and distribution of Phytophthora species isolated from diverse plant species in PA nurseries and greenhouses. We identified 1137 Phytophthora isolates cultured from clinical samples of >150 plant species submitted to the PA Department of Agriculture for diagnosis from 1975 to 2019 using sequences of one or more loci and morphological characteristics. The three most commonly received plants were Abies, Rhododendron, and Pseudotsuga. Thirty-six Phytophthora species identified represent all clades, except 3 and 10, and included a distinct subgroup of a known species and a prospective new species. Prominent pathogenic species such as P. cactorum, P. cinnamomi, P. nicotianae, P. drechsleri, P. pini, P. plurivora, and P. sp. kelmania have been found consistently since 1975. One isolate cultured from Juniperus horizontalis roots did not correspond to any known species, and several other isolates also show considerable genetic variation from any authentic species or isolate. Some species were isolated from never-before-documented plants, suggesting that their host range is larger than previously thought. This survey only provides a coarse picture of historical patterns of Phytophthora encounters in PA nurseries and greenhouses because the isolation of Phytophthora was not designed for a systematic survey. However, its extensive temporal and plant coverage offers a unique insight into the association of Phytophthora with diverse plants in nurseries and greenhouses.


2015 ◽  
Vol 16 (1) ◽  
pp. 29-30 ◽  
Author(s):  
Carlye A. Baker ◽  
Scott Adkins

To the best of our knowledge, this is the first report of TCSV infection of H. wayetii and S. truncata from any location, although other tospoviruses are known to infect these and related plant species. The identification of these two diverse plant species as the first reported natural ornamental hosts of TCSV has implications for TCSV epidemiology and management in ornamental and vegetable crops, which frequently share production space. Accepted by publication 15 January 2015. Published 25 February 2015.


2017 ◽  
Vol 9 (4) ◽  
pp. 2079-2092 ◽  
Author(s):  
Ashu Singh ◽  
Manoj Kumar Sharma ◽  
R. S. Sengar

Proline accumulation occurs in a large range of plant species in retaliation to the numerous abiotic stresses. An exclusive research pattern suggests there is a pragmatic relation between proline accumulation and plant stress tolerance. In this review, we will discuss the metabolism of proline accumulation and its role in stress tolerance in plants. Pertaining to the literature cited clearly indicates that not only does it acts as an osmolyte, it also plays important roles during stress as a metal chelator and an antioxidative defence molecule. Moreover, when applied exogenously at low concentrations, proline enhanced stress tolerance in plants. However, some reports point out adverse effects of proline when applied at higher doses. Role of proline gene in seed germination, flowering and other developmental programmes; thus creation of transgene overexpressing this gene would provide better and robust plants. In this context this review gives a detailed account of different proline gene over-expressed in all the trans-genic crops so far.


2000 ◽  
Vol 3 (2) ◽  
pp. 117-124 ◽  
Author(s):  
John C Cushman ◽  
Hans J Bohnert

Sign in / Sign up

Export Citation Format

Share Document