scholarly journals Effect of the Boron Concentration in Irrigation Water on the Elemental Composition of Edible Parts of Tomato, Green Bean, Potato, and Cabbage Grown on Soils With Different Textures

2021 ◽  
Vol 12 ◽  
Author(s):  
Márk Rékási ◽  
Péter Ragályi ◽  
Anna Füzy ◽  
Nikolett Uzinger ◽  
Péter Dobosy ◽  
...  

The most important environmental source of boron (B) contamination is irrigation water. The data on the effect of B on the elemental composition in the edible parts of vegetables are scarce. A greenhouse pot experiment investigated the effect of irrigation water containing 0.1 and 0.5 mg/L B on the biomass, elemental (e.g., B, Mg, K, Fe, Cu, and Zn) composition, and photosynthetic parameters of tomato (Solanum lycopersicum), green bean (Phaseolus vulgaris), potato (Solanum tuberosum), and cabbage (Brassica oleracea) plants grown on 10 kg of sand, silty sand, or silty soil. The biomass of the edible part was unaffected by B treatment. The soil type determined the effect of B irrigation on the elemental composition of vegetables. The B content increased by 19% in tomatoes grown on silty soil. The 0.1 mg/L B treatment facilitated tomato fruit ripening on all soils, and the 0.5 mg/L B treatment doubled its chlorophyll content index (CCI) on silty soil. The 0.5 mg/L B treatment negatively affected the nutritional value of green beans on all soils, decreasing the Fe and K contents by an average of 83 and 34%, respectively. The elemental composition of potato was unaffected by the treatments, but the CCI of potato leaves increased in the 0.5 mg/L B treatment by 26%. The B content was increased by 39% in cabbages grown on light-textured soils. In conclusion, B concentration of up to 0.5 mg/L in irrigation water had no significant beneficial or adverse effect on the investigated vegetables, but 0.1 mg/L B treatment could shorten tomato fruit maturation time on B-poor soils. The B levels in vegetables remained suitable for human consumption.

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2086
Author(s):  
Péter Ragályi ◽  
Tünde Takács ◽  
Anna Füzy ◽  
Nikolett Uzinger ◽  
Péter Dobosy ◽  
...  

Additional Selenium (Se) intake may be recommended in areas of Se deficiency to prevent various human diseases. One possibility for this is biofortification. In this experiment, the effect of irrigation water containing 100 and 500 µg L−1 Se, in the form of Na2SeO4, on green bean, cabbage, potato and tomato was investigated in a greenhouse pot experiment with sand, silty sand and silt soils. The chlorophyll content index was usually improved by Se and was significantly higher in potato in sand and silty sand and in tomato in silty sand and silt soils. The Se content of edible plant parts increased 63-fold in the 100 µg L−1 Se treatment and almost 400-fold in the 500 µg L−1 Se treatment, averaged over the four species and the three soils. Irrigation water with a Se content of 100 µg L−1 may be suitable for the production of functional food in the case of green beans, potatoes and tomatoes. However, due to its greater Se accumulation, cabbage should only be irrigated with a lower Se concentration. The use of Se-enriched irrigation water might be a suitable method for Se biofortification without a significant reduction in plant biomass production and without a remarkable modification of other macro- and microelement contents.


2021 ◽  
Vol 3 ◽  
Author(s):  
Guillaume Clair-Caliot ◽  
Sara J. Marks ◽  
Stephan J. Hug ◽  
Anja Bretzler ◽  
N'goran Djo N'guessan ◽  
...  

As compared to the Asian lowlands, environmental exposure to arsenic (As) in West Africa has received little attention. Recent studies have found geogenic As contamination of groundwater in many regions in Burkina Faso. As-contaminated groundwater is used for drinking and increasingly also for the irrigation of staple foods. This study assesses the extent to which irrigation and cooking of staple foods in Burkina Faso influence plant uptake and dietary consumption of As, respectively. Using a greenhouse experimental setup, we evaluated the transfer of As from irrigation water spiked with 0, 100, 500, and 1,000 μg/L As(V) to the organs and edible parts of seven commonly consumed vegetables (amaranth, carrot, green bean, lettuce, okra, spinach, and tomato). Next, we cooked the greenhouse-cultivated vegetables and externally purchased foods with As-free and As-spiked waters. The As content in all plant organs increased with increasing As in the irrigation water. With 500 μg/L, the concentrations of As in the edible parts (ordered from highest to lowest) were as follows: spinach (6.6 ± 0.5 μg/g); lettuce (3.9 ± 0.1 μg/g); carrot (3.5 ± <0.1 μg/g); amaranth (2.2 ± <0.1 μg/g); okra (0.9 ± <0.1 μg/g); green bean (0.8 ± <0.1 μg/g); and tomato (0.2 ± <0.1 μg/g). The edible parts of leafy vegetables irrigated with As-spiked water had a higher average As content (4.9 ± 4.5 μg/g) than root (2.9 ± 2.0 μg/g) and fruit/pod vegetables (0.8 ± 1.1 μg/g). Cooking with an excess volume of As-free water reduced the As content in the cooked vegetables by 39% on average, while cooking with As-contaminated water transferred As to the cooked food. The As content in steamed foods was 8 to 18 times lower than in boiled foods. Based on human health risk estimates, we generally recommend to avoid planting leafy and root vegetables in areas with As concentrations above 100 μg/L in irrigation water. In areas with elevated As contamination, mitigation strategies include the cultivation of fruit/pods vegetables such as tomato and okra and steaming the food instead of boiling.


Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06086
Author(s):  
Mariela Cuellar ◽  
Verónica Baroni ◽  
Valeria Pfaffen ◽  
Julieta Griboff ◽  
Patricia Ortiz ◽  
...  

2015 ◽  
Vol 72 (4) ◽  
pp. 579-584 ◽  
Author(s):  
A. Muramatsu ◽  
H. Ito ◽  
A. Sasaki ◽  
A. Kajihara ◽  
T. Watanabe

To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.


1987 ◽  
Vol 84 (3) ◽  
pp. 911-917 ◽  
Author(s):  
Birgit Piechulla ◽  
Richard E. Glick ◽  
Hubert Bahl ◽  
Anastasios Melis ◽  
Wilhelm Gruissem

2009 ◽  
Vol 103 (1) ◽  
pp. 116-119 ◽  
Author(s):  
G.G. Romero ◽  
C.C. Martinez ◽  
E.E. Alanís ◽  
G.A. Salazar ◽  
V.G. Broglia ◽  
...  

2011 ◽  
Vol 35 (2) ◽  
pp. 645-654 ◽  
Author(s):  
Bruno Fernando Faria Pereira ◽  
Danilo Eduardo Rozane ◽  
Suzana Romeiro Araújo ◽  
Gabriel Barth ◽  
Rafaela Josemara Barbosa Queiroz ◽  
...  

Among the toxic elements, Cd has received considerable attention in view of its association with a number of human health problems. The objectives of this study were to evaluate the Cd availability and accumulation in soil, transfer rate and toxicity in lettuce and rice plants grown in a Cd-contaminated Typic Hapludox. Two simultaneous greenhouse experiments with lettuce and rice test plants were conducted in a randomized complete block design with four replications. The treatments consisted of four Cd rates (CdCl2), 0.0; 1.3; 3.0 and 6.0 mg kg-1, based on the guidelines recommended by the Environmental Agency of the State of São Paulo, Brazil (Cetesb). Higher Cd rates increased extractable Cd (using Mehlich-3, Mehlich-1 and DTPA chemical extractants) and decreased lettuce and rice dry matter yields. However, no visual toxicity symptoms were observed in plants. Mehlich-1, Mehlich-3 and DTPA extractants were effective in predicting soil Cd availability as well as the Cd concentration and accumulation in plant parts. Cadmium concentration in rice remained below the threshold for human consumption established by Brazilian legislation. On the other hand, lettuce Cd concentration in edible parts exceeded the acceptable limit.


2019 ◽  
Vol 10 ◽  
Author(s):  
Stefan Petrasch ◽  
Christian J. Silva ◽  
Saskia D. Mesquida-Pesci ◽  
Karina Gallegos ◽  
Casper van den Abeele ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 666 ◽  
Author(s):  
Juyang Liao ◽  
Linping Zhang ◽  
Yan Liu ◽  
Qiaoyun Li ◽  
Danxia Chen ◽  
...  

Food supply from forests is a fundamental component of forest ecosystem services, but information relating to suitability for human consumption and sustainable utilization of non-timber forest products (NTFPs) in developing countries is lacking. To address this gap in knowledge, diverse datasets of edible plants and macro-fungi were obtained from field collections, historical publications, and community surveys across seven cities in Guangdong Province (GP), southern China. Seven edible parts and five food categories of plant species were classified according to usage and specific nutrient components. Edible plant species were also categorized into different seasons and life forms. Our results show that at least 100 plant species (with 64 plant species producing fruit) and 20 macro-fungi were commonly used as edible forest products in subtropical GP. There were 55 and 57 species providing edible parts in summer and autumn, respectively. Many edible plants had multiple uses. Tree and herbaceous species made up the majority of the total. Our study provides evidence that both edible plants and macro-fungi can enrich the food supply for residents in rural and urban areas by acting as supplemental resources. We therefore suggest that, in spite of the prevalence of imported foods due to modern infrastructure, edible NTFPs from subtropical forests might be leveraged to support the increasing demand for food in an era of rapid urbanization and global change.


Sign in / Sign up

Export Citation Format

Share Document