scholarly journals Cadmium availability and accumulation by lettuce and rice

2011 ◽  
Vol 35 (2) ◽  
pp. 645-654 ◽  
Author(s):  
Bruno Fernando Faria Pereira ◽  
Danilo Eduardo Rozane ◽  
Suzana Romeiro Araújo ◽  
Gabriel Barth ◽  
Rafaela Josemara Barbosa Queiroz ◽  
...  

Among the toxic elements, Cd has received considerable attention in view of its association with a number of human health problems. The objectives of this study were to evaluate the Cd availability and accumulation in soil, transfer rate and toxicity in lettuce and rice plants grown in a Cd-contaminated Typic Hapludox. Two simultaneous greenhouse experiments with lettuce and rice test plants were conducted in a randomized complete block design with four replications. The treatments consisted of four Cd rates (CdCl2), 0.0; 1.3; 3.0 and 6.0 mg kg-1, based on the guidelines recommended by the Environmental Agency of the State of São Paulo, Brazil (Cetesb). Higher Cd rates increased extractable Cd (using Mehlich-3, Mehlich-1 and DTPA chemical extractants) and decreased lettuce and rice dry matter yields. However, no visual toxicity symptoms were observed in plants. Mehlich-1, Mehlich-3 and DTPA extractants were effective in predicting soil Cd availability as well as the Cd concentration and accumulation in plant parts. Cadmium concentration in rice remained below the threshold for human consumption established by Brazilian legislation. On the other hand, lettuce Cd concentration in edible parts exceeded the acceptable limit.

1999 ◽  
Vol 34 (4) ◽  
pp. 575-583 ◽  
Author(s):  
Edson Perez Guerra ◽  
Deonisio Destro ◽  
Lilian Azevedo Miranda ◽  
Ricardo Montalván

This work was conducted at the Universidade Estadual de Londrina (UEL), in Londrina, State of Paraná, Brazil, with the goal to study food-type soybean (Glycine max (L.) Merrill) genotypes performance for use in cultivation or crosses. A total of 104 genotypes were analyzed: 88 were food-type with large seeds, eight were food-type with small seeds, and eight-grain types adapted cultivars. The experimental plan was in randomized complete block design with four replications, and 12 traits of agronomic importance were considered. Genetic diversity was observed in the food-type germplasm. There were some genotypes with high yield adapted to a normal period of sowing. Soybean genetic improvement programs for direct human consumption in Brazil, either by means of Asiatic pure lines or by means of the incorporation of genes for late flowering in short-day conditions in this lines is highly viable.


Author(s):  
Frederick Boateng ◽  
Samuel Amiteye ◽  
Andrew Sarkodie Appiah ◽  
Dinah Marri ◽  
Benjamin Kwasi Offei ◽  
...  

Aims: The specific objectives of this study were: to identify the diversity of insect species associated with ten okra cultivars, and to assess the abundance of the insect species and the extent of leaf damage during vegetative, flowering and fruiting stages of ten okra cultivars under field conditions. Study Design:  The experimental treatments were deployed in a Randomized Complete Block Design (RCBD), replicated four times. Place and Duration of Study: The research was conducted at Nuclear Agriculture Research Center (NARC) farms and the laboratories of Radiation Entomology and Pest Management Center (REPMC) of Biotechnology and Nuclear Agriculture Research Institute (BNARI), between July 2017 and March 2018. The study area is located at Kwabenya, Accra on latitude 5º40' N, longitude 0º13' W with Ochrosol (Ferric Acrisol) soil type, derived from quartzite Schist. Methodology: Plant materials used for the study consisted of five local and five exotic okra cultivars. The local cultivars were Asutem (AS), Togo (TG), Labadi dwarf (LD), Kwab (K1) and Adom (AD). These were obtained from the market (Asamankese and Dome) and okra farmers’ fields. The exotic cultivars were Lucky 19F1 (LF1), F1 Kirene (F1K), F1 Sahari (F1S), Kirikou F1 (KF1) and Clemson Spineless (CS). These cultivars were obtained from a commercial seed shop, Technisem, Accra. Land preparation of the research site involved plowing and harrowing. The prepared land was lined and pegged into 40 plots using a Randomized Complete Block Design with four replications. Each replicate measured 35 m x 7 m and separated by 2 m from each other with 10 subplots within a block. Each subplot measured 3 m x 3 m and spaced from one another by 1 m. The total size of the experimental area was 646 m2. The okra seeds were manually sown to a depth of 2 cm directly at a spacing of 0.50 m x 0.60 m. Four seeds per hill were sown and later thinned to one seedling per hill after emergence. Field management practices such as weed control and watering were done as and when required.  Data on insects were collected from five okra plants randomly selected from the middle rows. Okra leaves were carefully examined by observing both the abaxial and adaxial surfaces. Insects found on the surfaces of the leaves were identified, counted manually and recorded as either major or minor based on their incidence pattern. Data was taken daily because the ten cultivars have different vegetative, flowering and fruiting dates. Insects were counted between the hours of 6.00 am and 8.00 am when they are inactive and cannot fly. In order to determine the extent of leaf damage, the following described scoring scale was designed for this work. Leaf damage was determined by counting the total number of perforations created by the insects in all leaves found on the five randomly selected test plants. This was then divided by the total number of leaves on the five selected test plants to obtain the average number of perforations per leaf. Leaves were visually assessed and scored for severity of damage using a damage rating where; 1 very mild damage (1 to 15 perforations); 2 mild damage (16 to 30 perforations); 3 moderately severe damage (31 to 45 perforations); 4 very severe damage (46 to 60 perforations); 5 extremely severe damage (more than 60 perforations). Results: A total of thirteen insect pests belonging to six orders (Coleoptera, Homoptera, Lepidoptera, Hymenoptera, Orthoptera and Mantodea), and thirteen families Chrysomelidae, Coccinellidae, Pyrgomorphidae, Meloidae, Noctuidae, Nolidae, Cicadellidae, Aleyrodidae, Aphididae, Pseudococcidae, Mantidae, Formicidae and Acrididae) were found to be abundant in the field. Among these, the highest number of insect species belonged to Homoptera group viz., Green Peach Aphid (Myzus persicae) Okra leafhopper (Amrasca biguttula), Whitefly (Bemisia tabaci), and striped mealybug (Ferrisia virgata) followed by Coleoptera (Flea beetle (Podagrica sp.) and Ladybird beetle (Cheilomenes lunata). On the vegetative stage of the okra, Flea beetle had the highest number on Lucky 19F1 (36.00±9.66 insects/plant). During the flowering stage, plants of L-19F1 had the highest mean number of Flea beetles (32.25±10.30 insects/plant). On the fruiting stage, plants of LD had the highest mean abundance of flea beetles (47.50±13.53 per plant). Conclusion: A total of 1,439 insects were recorded at the fruiting stage which was significantly higher than the flowering (855) and vegetative stages (693). Mean Whitefly counts were relatively low at the vegetative, flowering and fruiting stages of the cultivars. However, Flea beetle (Podagrica sp.) and Green Peach aphids (Myzus persicae) mean numbers increased progressively throughout all the stages. In the present study, the severity of leaf damage was significantly higher at the fruiting stage compared with the flowering and vegetative stages. Plants of cultivars LD and AS were the most promising recording the least leaf damage (111.95) and (119.10) respectively.


2019 ◽  
Vol 8 (1) ◽  
pp. 82
Author(s):  
Simunji Simunji ◽  
Kalaluka L. Munyinda ◽  
Obed I. Lungu ◽  
Alice M. Mweetwa ◽  
Elijah Phiri

Nitrogen is a major plant nutrient which is most limiting in the soil due to soil losses of mineral nitrogen (N) form. To ensure availability of nitrogen in the soil, the study was conducted to screen four cowpea genotypes for Biological Nitrogen Fixation (BNF) and their contribution to maize yield in maize- cowpea rotation. The cowpea genotypes used were mutants LT11-3-3-12 (LT) and BB14-16-2-2 (BB) and their parental varieties Lutembwe (LTPRT) and Bubebe (BBPRT) respectively. Trials were established at two sites (Chisamba and Batoka) of different soil types. The Randomized Complete Block Design (RCBD) with three replications was used. Labelled 15N urea was applied at 20kgNha-1 on the four cowpea genotypes during 2015/16 growing season. Cowpea plant parts were dried and milled for 15N isotopic analysis. The data collected included Nitrogen content and atom % 15N excess in the fixing cowpea genotypes and non-nitrogen fixing pearl millet to determine total nitrogen derived from the atmosphere (TNdfa) and total nitrogen (TN) in plant parts which were further used to compute Biological Nitrogen Fixation (BNF). The results showed that BNF by cowpea genotypes at Chisamba was 63.9 kg ha-1 and was significantly (P<0.001) more than BNF of 6.6 kgha-1 at Batoka. The LT mutant fixed significantly (P<0.001) higher nitrogen of 86.1 kgha-1 and 16.5kg ha-1 at Chisamba and Batoka respectively than other genotypes. However, both BB and LT mutants significantly fixed more nitrogen than their parents and have demonstrated to increase maize grain yields up-to 12 tha-1 in the maize – cowpea rotation.


2017 ◽  
Vol 51 (03) ◽  
Author(s):  
Prosper I. Massawe ◽  
Kelvin M. Mtei ◽  
Linus K. Munishi ◽  
Patrick A. Ndakidemi

The study to investigate the effect of Rhizobium inoculation and cropping systems on the uptake of macronutrients in shoot, root and whole plant of Phaseolus vulgaris and Lablab purpureus was conducted at Selian Agricultural Research Institute (SARI) for two cropping seasons. A randomized complete block design was used in a 3-factorial arrangement with two levels of Rhizobium (with and without rhizobia), two legumes (P. vulgaris and L. purpureus) and five cropping systems (sole maize or sole legumes, 1 row maize to 1 row legumes (1:1) i.e. 0 m or 0.45 m of legume from maize row, 1 row maize to 2 rows of legumes (1:2) i.e. 0.1 m or 0.2 m of legumes from maize rows). The result showed that Rhizobium inoculation significantly (P£0.001) increased the uptake of N, P, K, Ca and Mg in the plant parts and whole plant. Similarly, cropping systems significantly (P£0.001) increased the uptake of N, K and Mg in shoots and whole plant of P. vulgaris and L. purpureus but decreased the P and Ca content in roots. Legumes significantly increased the uptake of the macronutrients in shoots and roots but more nutrients concentration in shoots than roots for both cropping seasons. There were significant (P£0.001) interaction between; Rhizobium x legumes x cropping systems on whole plant uptake of N in cropping season 1 and 2. Regardless of the type of interaction, inoculated legumes maximized the uptake of macronutrients in shoots, roots and whole plant.


2016 ◽  
Vol 34 (2) ◽  
pp. 196-201
Author(s):  
Antonio II Cardoso ◽  
Marina TR Claudio ◽  
Pâmela G Nakada-Freitas ◽  
Felipe O Magro ◽  
Ana EB Tavares

abstract Considering the scarce information on nutrient extraction by plants for seed production within vegetable crops, as well as the effect of fertilization over extraction, studying nutrient accumulation in different plant parts under varied fertilization rates is necessary. This study aimed to evaluate the influence of phosphate rates on macronutrient accumulation in cauliflower plants during seed production. Five phosphate rates were studied (0, 300, 600, 900 and 1200 kg/ha P2O5), in a randomized complete block design, with four replications. Accumulation of nutrients in the different plant parts was evaluated at the end of the cycle (vegetative and reproductive, the latter divided in seeds and inflorescence). Data were submitted to analysis of variance and regression. Considering only the seeds, a quadratic effect was obtained for the accumulation of all macronutrients, with maximum estimated for rates between 858 and 952 kg/ha P2O5. Considering the whole plant (total accumulation), a linear increase for P, Ca and S was obtained the higher the P2O5 rates, while the effect was quadratic for N, K and Mg accumulation. The total nutrient accumulation descending order was: K>N>Ca>S>P>Mg, and considering only the seeds was: N>S>K>P>Ca>Mg, S being highlighted as the second most accumulated nutrient in the seeds.


2002 ◽  
Vol 92 (9) ◽  
pp. 928-935 ◽  
Author(s):  
D. M. Sether ◽  
J. S. Hu

The roles of Pineapple mealybug wilt-associated viruses (PMWaVs) and mealybug (Dysmicoccus spp.) feeding in the etiology of mealybug wilt of pineapple (MWP) were evaluated. Container-grown pineapple (Ananas comosus) plants from five commercially grown Hawaiian proprietary selections and a field study utilizing a randomized complete block design were used to test four treatments for induction of MWP: PMWaV-1-free and PMWaV-1-infected plants maintained mealybug-free, and PMWaV-1-free and PMWaV-1-infected plants that received monthly applications of nonviruliferous mealybugs. A second PMWaV, PMWaV-2, was identified in some of the test plants during the course of these studies and was shown to be an integral factor in MWP etiology. Typical MWP symptoms developed only in plants infected with PMWaV-2 and exposed to mealybugs. MWP did not develop in PMWaV-1-free or PMWaV-1-infected plants that were exposed to mealybugs, or in mealy-bug-free plants infected with PMWaV-1, PMWaV-2, or both viruses. Plants from all five Hawaiian proprietary selections developed MWP when PMWaV-2 infected plants were exposed to mealybug feeding. A PMWaV-2-specific monoclonal antibody was produced that decorated the particles in immunosorbent electron microscopy and detected the virus in tissue blot immunoassays. PMWaV-2 was acquired and transmitted by pink and gray pineapple mealybugs (Dysmicoccus spp.) to pineapple plants, and these plants subsequently developed MWP symptoms while sustaining mealybug populations.


2017 ◽  
Vol 4 (2) ◽  
pp. 149-161
Author(s):  
Berton Sianturi

Crassocephalum crepidioides on Cornfields in Dairi Regency had been reported tobecome more difficult to control using paraquat. The objective of the research was todetermine the characteristics and the distribution of C.crepidioides resistant to paraquatin cornfields. The experiment was carried out in two steps, the first step was screeningthe population of C. crepidioides with paraquat at the recommended dose, and the secondstep, dose-response experiment for the resistance level of C. crepidioides population withdose 0, 76, 152, 304,5, 609, 1218, and 2436 g.ai /ha. In the first step experiment, paraquatdichloride was applied at 280 g.ai/ha. The treatments were arranged in a randomized blockdesign with 3 replication. The second step experiment was that the resistant populationsconfirmed in the first experiment were sprayed for their dose-response. The treatmentswere arranged in a randomized complete block design (CRBD). The results showed thatof 30 populations of C. crepidiodes, 19 populations (63.3%) were categorized to beresistant with the mortality ranging from 10.84% to 52.08%, and 11 populations (36.7%),was categorized as high resistance with mortality of 0% to 9.21%. The level ofresistance (R/S) of R-C25, R-C27, and R-C30 populations of C. crepidioides were 12,3,14,86, and 24,83 times consecutively, compared with the susceptible population. Thenumber of C. crepidioides chlorophyl leaves in susceptible populations was significantlylower than that of a resistant populations.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Author(s):  
Ammar Hameed Madi ◽  
Jawad A. Kamal Al-Shibani

This study was conducted to investigate the effect of bacterial bio-fertilization A. chroococcum and P. putide and four levels of compost (0, 1, 2, 3) tons.h-1 on the leaves content of N.P.K elements. The experiment was carried out in one of the greenhouses of the College of Agriculture - University of Al-Qadisiyah during fall season 2018-2019. It designed in accordance with the Randomized Complete Block Design (RCBD) with three replicates in sandy loam soil. The means of treatments were compared with the least significant difference (LSD) at (5)% probability level. The results present that the treatments of A. chroococcum, P. putide and compost at (3) tons.kg-1 significantly increases the leaves content of K.P.K compared to all other treatments in the flowering stage (4.970, 0.5000, and 4.930) mg.kg-1, respectively. This treatment was followed by the effect of the treatment of A. chroococcum and compost at (3) tons.kg-1, which increases the values of all traits except the leaf content of (P). Bio-fertilizer with P. putide + A. chroococcum significantly increases the leaves' content of P.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 447c-447
Author(s):  
T.J. Banko ◽  
M.A. Stefani

During container production of portulaca, growth of long, prostrate, sparsely branched stems makes handling of plants difficult, and reduces their commercial appeal. Growers prefer to minimize shoot elongation while increasing branching to provide a full, compact plant. The objectives of this study were to evaluate growth regulators for promotion of branching and inhibition of stem elongation. Container-grown plants ≈21 cm in diameter were treated with sprays of ProShear (benzylaminopurine) at 62.4, 125, and 250 ppm; Promalin (benzyaminopurine + gibberellins 4+7) at 125, 250, and 500 ppm; Atrimmec (dikegulac) at 250, 500, and 750 ppm; and Florel (ethephon) at 250, 500, and 750 ppm. These treatments were compared with untreated controls in a randomized complete-block design. Main shoot lengths were measured at 16, 31, and 51 days after treatment (DAT). Numbers of new shoot breaks were counted 16 DAT. The growth habit, that is, tendency to grow upright or prostrate, was also evaluated 16 DAT. The most-effective material for retarding primary shoot elongation and for stimulating secondary shoot development was ProShear. At 16 DAT, 250 ppm ProShear reduced shoot elongation by 25% compared to control plants. This treatment also increased the number of secondary shoot breaks by 143%. Promalin increased the number of new shoot breaks, but it also increased the lengths of all shoots. High rates of Florel and Promalin caused shoots to grow predominantly upright rather then prostrate. ProShear, however, caused more prostrate growth as rate increased.


Sign in / Sign up

Export Citation Format

Share Document