scholarly journals Variation Patterns of Functional Trait Moments Along Geographical Gradients and Their Environmental Determinants in the Subtropical Evergreen Broadleaved Forests

2021 ◽  
Vol 12 ◽  
Author(s):  
Caishuang Huang ◽  
Yue Xu ◽  
Runguo Zang

Understanding how environmental change alters the composition of plant assemblages is a major challenge in the face of global climate change. Researches accounting for site-specific trait values within forest communities help bridge plant economics theory and functional biogeography to better evaluate and predict relationships between environment and ecosystem functioning. Here, by measuring six functional traits (specific leaf area, leaf dry matter content, leaf nitrogen, and phosphorus concentration, leaf nitrogen/phosphorus, wood density) for 292 woody plant species (48,680 individuals) from 250 established permanent forest dynamics plots in five locations across the subtropical evergreen broadleaved forests (SEBLF) in China, we quantified functional compositions of communities by calculating four trait moments, i.e., community-weighted mean, variance, skewness, and kurtosis. The geographical (latitudinal, longitudinal, and elevational) patterns of functional trait moments and their environmental drivers were examined. Results showed that functional trait moments shifted significantly along the geographical gradients, and trait moments varied in different ways across different gradients. Plants generally showed coordinated trait shifts toward more conservative growth strategies (lower specific leaf area, leaf N and P concentration while higher leaf nitrogen/phosphorus and wood density) along increasing latitude and longitude. However, trends opposite to the latitudinal and longitudinal patterns appeared in trait mean values along elevation. The three sets of environmental variables (climate, soil and topography) explained 35.0–69.0%, 21.0–56.0%, 14.0–31.0%, and 16.0–30.0% of the variations in mean, variance, skewness, and kurtosis across the six functional traits, respectively. Patterns of shifts in functional trait moments along geographical gradients in the subtropical region were mainly determined by the joint effects of climatic and edaphic conditions. Climate regimes, especially climate variability, were the strongest driving force, followed by soil nutrients, while topography played the least role. Moreover, the relationship of variance, skewness and kurtosis with climate and their geographical patterns suggested that rare phenotypes at edges of trait space were selected in harsher environments. Our study suggested that environmental filtering (especially climate variability) was the dominant process of functional assembly for forest communities in the subtropical region along geographical gradients.

Author(s):  
Yang Wang ◽  
Limin Zhang ◽  
Jin Chen ◽  
Ling Feng ◽  
Fangbing Li ◽  
...  

In this study, the plant communities at five succession stages (herbage, herbage-shrub, shrub, tree-shrub, and tree) in the Zhenning Karst Plateau area of Guizhou were examined. The changes of plant functional characteristics in different succession stages were analyzed, as was the relationship between functional traits and environmental factors. The main results include the following. (1) During the succes-sion process, plant height, leaf dry matter mass, leaf area, leaf nitrogen content, and leaf phosphorus content gradually increased, whereas leaf thickness and specific leaf area decreased, and leaf C:P ratio and leaf N:P ratios did not change significantly. (2) Soil organic matter, soil total nitrogen, soil total phosphorus, soil C:N, soil C:P, and soil C:K increased at first and then decreased, reaching a peak at the tree-shrub stage. Soil total potassium fluctuated and soil bulk density gradually decreased and reached the lowest value at the tree-shrub stage. (3) Redundancy analysis (RDA) showed that the plant community shifted from a nutri-ent-poor soil environment to a nutrient-rich environment. Soil total phosphorus, soil C:K, soil organic mat-ter, soil C:N, and soil bulk density were the key environmental factors affecting the change of functional traits. (4) Structural equation modeling suggests that that specific leaf area and leaf nitrogen content had more sensitive responses to soil nutrient resources and environmental factors, respectively.


2007 ◽  
Vol 38 (17-18) ◽  
pp. 2323-2331 ◽  
Author(s):  
Aristidis Matsoukis ◽  
Dionisios Gasparatos ◽  
Aikaterini Chronopoulou‐Sereli

1994 ◽  
Vol 4 (2) ◽  
pp. 313-321 ◽  
Author(s):  
Lars L. Pierce ◽  
Steven W. Running ◽  
Joe Walker

2014 ◽  
Vol 4 (16) ◽  
pp. 3218-3235 ◽  
Author(s):  
Anthony P. Walker ◽  
Andrew P. Beckerman ◽  
Lianhong Gu ◽  
Jens Kattge ◽  
Lucas A. Cernusak ◽  
...  

2017 ◽  
Vol 6 (2) ◽  
pp. 1531 ◽  
Author(s):  
Prajjwal Dubey ◽  
Raghubanshi A. S. ◽  
Anil K. Dwivedi*

A range of leaf attributes was measured for 17 herbaceous species in four contrasting habitats fortnightly from July to September during 2996-2007. All herbaceous vegetation in 5 randomly located plots within each of four sites were clipped at ground level and analyzed fortnightly. Leaf area was recorded by the leaf area meter (Systronics; Leaf area meter- 211). Fresh leaves were dried at 80o C for 48 hr to estimate their dry weight. Specific Leaf Area (SLA) was determined as ratio of leaf area to leaf dry weight. Leaf nitrogen was measured by Kjeldahl method and phosphorus by phosphomolybdic blue colorimetric method. The obtained values were subjected to Two- tailed Pearson correlation coefficients using SPSS (2004 ver. 13) package. SLA, leaf nitrogen, leaf phosphorus and photosynthetic rate show positive relationship with each other.


2015 ◽  
Vol 112 (42) ◽  
pp. 13009-13014 ◽  
Author(s):  
Anu Eskelinen ◽  
Susan P. Harrison

Ecological theory and evidence suggest that plant community biomass and composition may often be jointly controlled by climatic water availability and soil nutrient supply. To the extent that such colimitation operates, alterations in water availability caused by climatic change may have relatively little effect on plant communities on nutrient-poor soils. We tested this prediction with a 5-y rainfall and nutrient manipulation in a semiarid annual grassland system with highly heterogeneous soil nutrient supplies. On nutrient-poor soils, rainfall addition alone had little impact, but rainfall and nutrient addition synergized to cause large increases in biomass, declines in diversity, and near-complete species turnover. Plant species with resource-conservative functional traits (low specific leaf area, short stature) were replaced by species with resource-acquisitive functional traits (high specific leaf area, tall stature). On nutrient-rich soils, in contrast, rainfall addition alone caused substantial increases in biomass, whereas fertilization had little effect. Our results highlight that multiple resource limitation is a critical aspect when predicting the relative vulnerability of natural communities to climatically induced compositional change and diversity loss.


Sign in / Sign up

Export Citation Format

Share Document