scholarly journals Relationship among specific leaf area, leaf nitrogen, leaf phosphorus and photosynthetic rate in herbaceous species of tropical dry deciduous in Vindhyan highlands

2017 ◽  
Vol 6 (2) ◽  
pp. 1531 ◽  
Author(s):  
Prajjwal Dubey ◽  
Raghubanshi A. S. ◽  
Anil K. Dwivedi*

A range of leaf attributes was measured for 17 herbaceous species in four contrasting habitats fortnightly from July to September during 2996-2007. All herbaceous vegetation in 5 randomly located plots within each of four sites were clipped at ground level and analyzed fortnightly. Leaf area was recorded by the leaf area meter (Systronics; Leaf area meter- 211). Fresh leaves were dried at 80o C for 48 hr to estimate their dry weight. Specific Leaf Area (SLA) was determined as ratio of leaf area to leaf dry weight. Leaf nitrogen was measured by Kjeldahl method and phosphorus by phosphomolybdic blue colorimetric method. The obtained values were subjected to Two- tailed Pearson correlation coefficients using SPSS (2004 ver. 13) package. SLA, leaf nitrogen, leaf phosphorus and photosynthetic rate show positive relationship with each other.

2012 ◽  
Vol 60 (4) ◽  
pp. 358 ◽  
Author(s):  
Georgia R. Koerber ◽  
Jack V. Seekamp ◽  
Peter A. Anderson ◽  
Molly A. Whalen ◽  
Stephen D. Tyerman

A putative hybrid between Eucalyptus largiflorens F.Muell. and Eucalyptus gracilis F.Muell., called green box, has attracted attention for its ability to grow on the salt- and drought-affected Chowilla floodplain of the Murray River in South Australia. Relationships between carbon isotope discrimination (Δ13C) and the ratio of substomatal to ambient CO2 (ci/ca) indicated that green box was not as water use efficient as E. largiflorens. Specific leaf area of green box and E. gracilis was significantly lower compared with E. largiflorens (38.38 and 36.96 versus 43.71 cm2 g–1). Leaf nitrogen for green box and E. gracilis was significantly lower compared with E. largiflorens (12.66 and 11.35 versus 15.07 mg g–1 dry weight, P = 0.004 and 0.001, respectively) and leaf carbon of E. gracilis was significantly higher compared with green box and E. largiflorens (541.75 versus 514.90 and 519.82 mg g–1 dry weight, P = 0.002 and 0.011 respectively). There were significantly (P = 0.016) more occurrences of elevated ci/ca below a minimum gs in E. gracilis compared with E. largiflorens, with green box being intermediate (means = 21.6, 6.8 and 9.4). After 10 years, E. largiflorens trunk circumference had significantly increased (P = 0.017) and height had significantly decreased (P = 0.026) due to visible dieback. Green box and E. gracilis grew slower, conserving resources, illustrating a useful strategy to consider when choosing plants for revegetation efforts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caishuang Huang ◽  
Yue Xu ◽  
Runguo Zang

Understanding how environmental change alters the composition of plant assemblages is a major challenge in the face of global climate change. Researches accounting for site-specific trait values within forest communities help bridge plant economics theory and functional biogeography to better evaluate and predict relationships between environment and ecosystem functioning. Here, by measuring six functional traits (specific leaf area, leaf dry matter content, leaf nitrogen, and phosphorus concentration, leaf nitrogen/phosphorus, wood density) for 292 woody plant species (48,680 individuals) from 250 established permanent forest dynamics plots in five locations across the subtropical evergreen broadleaved forests (SEBLF) in China, we quantified functional compositions of communities by calculating four trait moments, i.e., community-weighted mean, variance, skewness, and kurtosis. The geographical (latitudinal, longitudinal, and elevational) patterns of functional trait moments and their environmental drivers were examined. Results showed that functional trait moments shifted significantly along the geographical gradients, and trait moments varied in different ways across different gradients. Plants generally showed coordinated trait shifts toward more conservative growth strategies (lower specific leaf area, leaf N and P concentration while higher leaf nitrogen/phosphorus and wood density) along increasing latitude and longitude. However, trends opposite to the latitudinal and longitudinal patterns appeared in trait mean values along elevation. The three sets of environmental variables (climate, soil and topography) explained 35.0–69.0%, 21.0–56.0%, 14.0–31.0%, and 16.0–30.0% of the variations in mean, variance, skewness, and kurtosis across the six functional traits, respectively. Patterns of shifts in functional trait moments along geographical gradients in the subtropical region were mainly determined by the joint effects of climatic and edaphic conditions. Climate regimes, especially climate variability, were the strongest driving force, followed by soil nutrients, while topography played the least role. Moreover, the relationship of variance, skewness and kurtosis with climate and their geographical patterns suggested that rare phenotypes at edges of trait space were selected in harsher environments. Our study suggested that environmental filtering (especially climate variability) was the dominant process of functional assembly for forest communities in the subtropical region along geographical gradients.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1859
Author(s):  
Saeid Hassanpour-bourkheili ◽  
Mahtab Heravi ◽  
Javid Gherekhloo ◽  
Ricardo Alcántara-de la Cruz ◽  
Rafael De Prado

Wild poinsettia (Euphorbia heterophylla L.) is a difficult-to-control weed in soybean production in Brazil that has developed resistance to herbicides, including acetolactate synthase inhibitors. We investigated the potential fitness cost associated to the Ser-653-Asn mutation that confers imazamox resistance in this weed. Plant height, leaf and stem dry weight, leaf area and seed production per plant as well as the growth indices of specific leaf area, leaf area ratio, relative growth rate and net assimilation in F2 homozygous resistant (R) and susceptible (S) wild poinsettia progenies were pairwise compared. S plants were superior in most of the traits studied. Plant heights for S and R biotypes, recorded at 95 days after planting (DAP), were 137 and 120 cm, respectively. Leaf areas were 742 and 1048 cm2 in the R and S biotypes, respectively. The dry weights of leaves and stems in the S plants were 30 and 35%, respectively, higher than in the R plants. In both biotypes, the leaves had a greater share in dry weight at early development stages, but from 50 DAP, the stem became the main contributor to the dry weight of the shoots. The R biotype produced 110 ± 4 seed plant−1, i.e., 12 ± 3% less seeds per plant than that of the S one (125 ± 7 seed plant−1). The growth indices leaf area ratio and specific leaf area were generally higher in the S biotype or similar between both biotypes; while the relative growth rate and net assimilation rate were punctually superior in the R biotype. These results demonstrate that the Ser-653-Asn mutation imposed a fitness cost in imazamox R wild poinsettia.


1998 ◽  
Vol 46 (1) ◽  
pp. 103 ◽  
Author(s):  
Catherine E. Lovelock

Photosynthetic characteristics of tree species from the tropical C3 monocotyledon genus Pandanus were compared with C3 dicotyledon species growing in similar environments. The Pandanus species had similar maximum photosynthetic rates (Amax) to dicotyledon tree species in leaves from both sun and shaded environments when Amax was expressed on an area basis. Because of the low specific leaf area of the schlerophyllous leaves of the Pandanus compared to the dicotyledon species, the similarity in Amax was no longer evident when Amax was expressed on a dry-weight basis. Leaf dark respiration rates of the Pandanus on a leaf area and weight basis were generally lower than the shade-intolerant dicotyledons and similar to the shade-tolerant dicotyledon species. Low dark respiration rates and low specific leaf area of the Pandanus may be important characteristics for growth and survival in environments where resource levels are low and the likelihood of tissue damage is high.


2003 ◽  
Vol 81 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Gunnar Austrheim ◽  
Ove Eriksson

Recruitment is critical for the maintenance of plant populations and community diversity, but sexual regeneration is considered to be infrequent in climatically harsh habitats such as subalpine grasslands. This study examines the importance of regeneration through seed for 16 sparse herb species, and we asked whether their populations are limited by safe sites or the availability of seeds. Seedling recruitment and winter survival were recorded after sowing in an experimental split-plot design in (i) pasture grazed by livestock, and (ii) exclosed grassland cultivated for annual mowing. In addition we examined the effect of disturbance and local seedbank recruitment. All species were able to recruit and survive the first winter in at least some of the experimental plots, although none were initially present. Recruitment mainly occurred in disturbed plots, and disturbed pasture plots had a significantly higher recruitment than disturbed exclosures for all species except Silene dioica. We further examined whether specific plant traits were related to variation in recruitment. Lower recruitment in the disturbed exclosure was associated with higher specific leaf area, leaf dry weight, and seed number. In contrast, seeds sown in disturbed pasture recruited more independently of species traits. The exception was a negative correlation between recruitment and leaf dry weight, and an unexpected negative correlation with seed weight. We suggest that recruitment differences among habitats mainly reflect lower humidity in the exclosure. Consequently, small stature plants with small specific leaf area should have the highest recruiting probability when exposed to drought. The almost exclusive recruitment on disturbed plots indicates a strong competitive effect on the target species in vegetated plots, and suggests that safe sites for regeneration through seed are rare in subalpine grasslands.Key words: colonization, herbs, plant abundance and distribution, disturbance, pastures, cultivated exclosures, sowing experiment.


2014 ◽  
Vol 4 (16) ◽  
pp. 3218-3235 ◽  
Author(s):  
Anthony P. Walker ◽  
Andrew P. Beckerman ◽  
Lianhong Gu ◽  
Jens Kattge ◽  
Lucas A. Cernusak ◽  
...  

AGROFOR ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Giedrė SAMUOLIENĖ ◽  
Kristina LAUŽIKĖ ◽  
Nobertas USELIS

The aim of this study was to analyse the impact of light penetration into canopy and the effect of distances between technological tools and seasonality on photosynthetic behaviour. Apple tree cultivar ‘Auksis’ was grafted onto superdwarfing rootstock P22 and planted at different distances (from 0,25 m to 1 m in rows, while space between rows was 3 m). Photochemical reflectance and plant senescence reflectance indices were measured at two heights: 1.0 – 1.2 m above ground and 1.8 – 2.0 m above ground; specific leaf area, fresh and dry weight were evaluated from all the canopy. Strong positive correlations were determined between photochemical reflectance index and plant senescence reflectance index in higher and lower levels of the canopy. Strong negative correlations were determined between photochemical reflectance index and plant senescence reflectance index and between specific leaf area and dry and fresh mass ratio. Increasing density between apple trees from 1 m to 0.5 m led to increase in photochemical reflectance index and specific leaf area, but plant senescence reflectance index decreased. Meanwhile, seasonality had significant impact on specific leaf area formation and dry to fresh weight ratio. Dry and fresh weight ratio increased by 5% in autumn compared to summer. Our results indicated that with decreased light penetration into canopy photochemical reflectance index decreased, but plant senescence reflectance index increased. Moreover, in autumn, trees prepare for winter by storing more nutrients and leaves accumulate more dry mass.


Sign in / Sign up

Export Citation Format

Share Document