scholarly journals Effects of Urea-Ammonium Nitrate Solution on Yield, N2O Emission, and Nitrogen Efficiency of Summer Maize Under Integration of Water and Fertilizer

2021 ◽  
Vol 12 ◽  
Author(s):  
Baizhao Ren ◽  
Yanqing Guo ◽  
Peng Liu ◽  
Bin Zhao ◽  
Jiwang Zhang

In order to clarify the effects of urea-ammonium nitrate solution (UAN) on the yield, nitrogen-use efficiency (NUE), and N2O emissions of summer maize under the condition of water and fertilizer integration, different types of nitrogen fertilizer were selected, namely, ordinary urea (urea) and UAN. Our results showed that the application of UAN was beneficial to improve the dry matter accumulation and the distribution of summer maize. Compared with urea treatment, the total nitrogen accumulation of UAN treatment was increased by 15.8%, and the harvest index was increased by 5.5%. The partial productivity, agronomic use efficiency, and recovery rate of nitrogen for UAN treatment were also increased by 9.1, 19.8, and 31.2%, respectively, compared to those of urea treatment. The soil nitrogen dependence rate treated with UAN was significantly decreased by 13.6%, compared to that of urea treatment. In addition, UAN was beneficial to reduce N2O emissions. The N2O warming potential (GWPN2O) and N2O greenhouse gas intensity (GHGIN2O) of urea treatment were 39.3 and 52.4% higher, compared to those of UAN treatment. The improvement of dry matter accumulation and distribution and nitrogen efficiency for UAN treatment were beneficial to increase the grain yield by 9.1%, compared to that of urea treatment. In conclusion, under the fertigation, the application of UAN favors higher yield and nitrogen uptake, with less soil nitrogen residue, higher NUE, and better environmental effect.

2011 ◽  
Vol 40 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Hernan Vielmo ◽  
Amadeu Bona Filho ◽  
André Brugnara Soares ◽  
Tangriani Simioni Assmann ◽  
Paulo Fernando Adami

The objective of this study was to evaluate the effect of different doses of liquid swine slurry on dry matter accumulation rate and nutritive values (crude proten and neutral detergent fiber) of Tifton 85 grass pasture cultivated in southwestern Paraná from October 2005 to March 2006. It was used a complete random experimental design in a 4 x 4 factorial scheme composed of four doses of swine slurry in the plots (0, 80, 160 and 320 m³/ha) and four consecutive cuts in the subplots of the pasture. It was carried out two applications, one in the beginning of the experiment and other after 80 days. Cuts were performed every time pasture height was 40 cm. There was a dose versus cut interaction for all variables. Swine slurry promoted increase on dry matter accumulation rate only on the first cut after its application (cuts 1 and 3). Dry matter maximal yield (24.2 t/ha) was obtained at 249 m³/ha of swine slurry manure (143 and 106 m³/ha, respectively for applications 1 and 2), corresponding to 450 kg of N/ha. Percentage of crude protein increases and neutral detergent fiber of Tifton 85 grass decreases as dose of swine slurry increases, improving forage nutritive value. Use efficiency and nitrogen recovery rate decrease with addition of swine slurry doses.


1993 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. M. Bennett ◽  
T. R. Sinclair ◽  
Li Ma ◽  
K. J. Boote

Abstract Knowledge of the interception of solar radiation by crop canopies and the use of that radiation for carbon assimilation is essential for understanding crop growth and yield as a function of the environment. A field experiment was conducted in 1990 at Gainesville, FL to determine if differences in single leaf carbon exchange rate (CER), canopy radiation interception, radiation use efficiency (g dry matter produced per unit of solar radiation intercepted), and increase in seed harvest index with time exist among several commonly grown peanut (Arachis hypogaea L.) cultivars. Four cultivars (Early Bunch, Florunner, Marc I, and Southern Runner) were grown in field plots on a Kendrick fine sand (a loamy, siliceous, hyperthermic Arenic Paleudult) under fully irrigated, intensive management. Total crop and seed dry matter accumulation were determined, and canopy radiation interception measured at weekly intervals. CER of uppermost, fully expanded sunlit leaves were determined at midday at 2-wk intervals. Single leaf CER's were similar among cultivars (25 to 35 μmol CO2 m-2 s-1) and relatively stable throughout most of the season, before declining during late seed filling. Although interception of radiation differed somewhat among cultivars during early canopy development, total crop dry matter accumulation was linearly related to the cumulative amount of radiation intercepted by all four cultivars (r2=≥0.99). Radiation use efficiency was similar among all cultivars with a mean of 1.00 g dry matter accumulated per MJ of intercepted solar radiation. The increase in seed harvest index with time was linear (r2≤0.94) and the rates of increase were similar among the Early Bunch, Florunner, and Marc I cultivars (0.0058 d-1), but lower (0.0043 d-1) for the later maturing Southern Runner cultivar. Results from this study indicated that the primary differences among these four cultivars were in early-season development of the leaf canopy and resultant radiation interception and the rate of seed growth, rather than the capacity to assimilate carbon dioxide.


1997 ◽  
Vol 37 (6) ◽  
pp. 667 ◽  
Author(s):  
W. M. Strong ◽  
R. C. Dalal ◽  
J. E. Cooper ◽  
J. A. Doughton ◽  
E. J. Weston ◽  
...  

Summary. Continuous cereal cropping in southern Queensland and northern New South Wales has depleted native soil nitrogen fertility to a level where corrective strategies are required to sustain grain yields and high protein content. The objective of this study was to examine the performance of chickpea in chickpea–wheat rotations in terms of yields, water use and N2 fixation. The effects of sowing time and tillage practice have been studied. Chickpea grain yields varied from 356 kg/ha in 1995 to 2361 kg/ha in 1988; these were significantly correlated with the total rainfall received during the preceding fallow period and crop growth. Almost 48% of total plant production and 30% of total plant nitrogen were below-ground as root biomass. Mean values of water-use efficiency for grain, above-ground dry matter, and total dry matter were 5.9, 14.2 and 29.2 kg/ha.mm, respectively. The water-use efficiency for grain was positively correlated with the total rainfall for the preceding fallow and crop growth period although cultural practices modified water-use efficiency. The potential N2 fixation was estimated to be 0.6 kg nitrogen/ha.mm from 1992 total dry matter nitrogen yields assuming all of the nitrogen contained in chickpea was derived from the atmosphere. Sowing time had a much larger effect on grain yield and N2 fixation by chickpea than tillage practice (conventional tillage and zero tillage) although zero tillage generally increased grain yields. The late May–early June sowing time was found to be the best for chickpea grain yield and N2 fixation since it optimised solar energy use and water use, and minimised frost damage. Nitrogen fixation by chickpea was low, less than 40% nitrogen was derived from atmosphere, representing less than 20 kg nitrogen/ha.year. The potential for N2 fixation was not attained during this period due to below-average rainfall and high soil NO3-N accumulation because of poor utilisation by the preceding wheat crop. Increased soil NO3-N due to residual from fertiliser N applied to the preceding wheat crop further reduced N2 fixation. A simple soil nitrogen balance indicated that at least 60% of crop nitrogen must be obtained from N2 fixation to avoid continued soil nitrogen loss. This did not occur in most years. The generally negative soil nitrogen balance needs to be reversed if chickpea is to be useful in sustainable cropping systems although it is an attractive cash crop. Sowing time and zero tillage practice, possibly combined with more appropriate cultivars, to enhance chickpea biomass, along with low initial soil NO3-N levels, would provide maximum N2 fixation.


2005 ◽  
Vol 28 (8) ◽  
pp. 1311-1322
Author(s):  
Joseph Ofori ◽  
Akira Kamidouzono ◽  
Tsugiyuki Masunaga ◽  
Toshiyuki Wakatsuki

PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0174952 ◽  
Author(s):  
Xuefang Sun ◽  
Zaisong Ding ◽  
Xinbing Wang ◽  
Haipeng Hou ◽  
Baoyuan Zhou ◽  
...  

2004 ◽  
Vol 84 (2) ◽  
pp. 589-598 ◽  
Author(s):  
B. J. Zebarth ◽  
G. Tai ◽  
R. Tarn ◽  
H. de Jong ◽  
P. H. Milburn

One approach for reducing the contribution of potato (Solanum tuberosum L.) production to nitrate contamination of groundwater is to develop cultivars which utilize N more efficiently. In this study, variation in N use efficiency (NUE; dry matter production per unit crop N supply) characteristics of 20 commercial potato cultivars of North American and European origin were evaluated in 2 yr. Cultivars were grown with or without application of 100 kg N ha-1 as ammonium nitrate banded at planting. The recommended within-row spacing was used for each cultivar and no irrigation was applied. Plant dry matter and N accumulation were determined prior to significant leaf senescence. Crop N supply was estimated as fertilizer N applied plus soil inorganic N measured at planting plus apparent net soil N mineralization. Nitrogen use efficiency decreased curvilinearly with increasing crop N supply. Nitrogen use efficiency was lower for early-maturing cultivars compared to mid-season and late-maturing cultivars. A curvilinear relationship was obtained between plant dry matter accumulation and plant N accumulation using data for all cultivars. Deviations from this relationship were interpreted as variation in N utilization efficiency (NUtE; dry matter accumulation per unit N accumulation). Significant differences in NUtE were measured among cultivars of similar maturity. Nitrogen uptake efficiency (NUpE; plant N content per unit crop N supply) and soil nitrate concentration measured at plant harvest were uniformly low for all cultivars when crop N supply was limited, but varied among cultivars when N was more abundant. This suggests that potato cultivars vary more in terms of N uptake capacity (plant N accumulation in the presence of an abundant N supply) than in terms of NUpE. Key words: Solanum tuberosum, N mineralization, dry matter accumulation, N accumulation, N utilization efficiency


1991 ◽  
Vol 116 (3) ◽  
pp. 329-339 ◽  
Author(s):  
M. McGowan ◽  
H. M. Taylor ◽  
J. Willingham

SUMMARYGrain sorghum (Sorghum bicolor L. Moench) was grown in Texas in 1985 at a constant population density of c. 6·6 plants/m2 in rows 0·5, 1·0 and 1·5 m apart and with the soil profile at field capacity at planting time. Dry matter production and yield were least at the widest spacing, principally because of a reduction in number of tillers. Dry matter accumulation was in direct proportion to the amount of light intercepted and largely independent of spacing between rows, with a conversion coefficient of 1·71 g dry matter/MJ energy intercepted. The most widely spaced crop used less water but not in proportion to the extent that ground cover was reduced. Water use efficiency was also less in the most widely spaced crop, probably because of heat advection from the bare soil between rows.


2017 ◽  
Vol 9 (1) ◽  
pp. 230-236
Author(s):  
Ranbir Singh Rana ◽  
Bhosale Arjun Vaijinath ◽  
Sanjay Kumar ◽  
Ranu Pathania

Field experiments were conducted during rabiseason of 2007-08 and 2008-09 to study the phenology, thermal indices and its subsequent effect on dry matter accumulation of mustard (Brassica juncea L.) varieties viz., RCC-4, Kranti and Varuna grown under varying environmental conditions of Himachal Pradesh. The early sown (10th October) crop varieties took maximum average growing degree days for flower initiation (492±1), 50% flower-ing (682±1), pod initiation (742±1), 90% pod formation (811±4) and maturity (1394±8) which decreased with subse-quent delay in sowing time and recorded lowest under late sown (9th November) crop. The accumulated helio-thermal units and photo-thermal units decreased from 9824 to 7467 oC day hour and 19074 to 15579 oC day hour, respectively. High heat-use efficiency was obtained under late sown condition on 30th October. The heat-use efficiency (HUE) was high at 90% pod formation stage as compared to other stages in all the varieties and sowing dates (except 9th November sowing). The early sown (10th October) crop had maximum calendar days and cumula-tive pan evaporation (158 days and 448.2 mm) followed by normal (20th and 30th October) (153 days and 434 mm) and late (9th November) (138 days and 403.1 mm) sown crop indicating higher water requirement under early sow-ing. The predictive regression models explained 83-85% variation in dry matter yield in three varieties of mustard. The agro climatic indices are important determinants for temperature, radiations and photoperiods behaviors of crop. The accurate predictions of crop phenology are useful inputs for crop simulation modeling and crop management, and used for climate change assessment and simulated adaptations in present scenarios.


Sign in / Sign up

Export Citation Format

Share Document