scholarly journals Historical Dynamics of Semi-Humid Evergreen Forests in the Southeast Himalaya Biodiversity Hotspot: A Case Study of the Quercus franchetii Complex (Fagaceae)

2021 ◽  
Vol 12 ◽  
Author(s):  
Si-Si Zheng ◽  
Xiao-Long Jiang ◽  
Qing-Jun Huang ◽  
Min Deng

The Oligocene and Miocene are key periods in the formation of the modern topography and flora of East Asian and Indo-China. However, it is unclear how geological and climatic factors contributed to the high endemism and species richness of this region. The Quercus franchetii complex is widespread in the southeast Himalaya fringe and northern Indo-China with a long evolutionary history. It provides a unique proxy for studying the diversity pattern of evergreen woody lineages in this region since the Oligocene. In this study, we combined chloroplast (cpDNA) sequences, nuclear microsatellite loci (nSSRs), and species distribution modeling (SDM) to investigate the impacts of geological events on genetic diversity of the Q. franchetii complex. The results showed that the initial cpDNA haplotype divergence was estimated to occur during the middle Oligocene (30.7 Ma), which might have been raised by the tectonic activity at this episode to the Miocene. The nSSR results revealed two major groups of populations, the central Yunnan-Guizhou plateau (YGP) group and the peripheral distribution group when K = 2, in responding to the rapid YGP uplift during the late Miocene, which restricted gene flow between the populations in core and marginal areas. SDM analysis indicated that the distribution ranges of the Q. franchetii complex expanded northwards after the last glacial maximum, but the core distribution range in YGP was stable. Our results showed that the divergence of Q. franchetii complex is rooted in the mid-Oligocene. The early geological events during the Oligocene, and the late Miocene may play key roles to restrict seed-mediated gene flow among regions, but the pollen-mediated gene flow was less impacted. The uplifts of the YGP and the climate since LGM subsequently boosted the divergence of the populations in core and marginal areas.

2007 ◽  
Vol 9 (6) ◽  
pp. 1521-1532 ◽  
Author(s):  
Jim Provan ◽  
Gemma E. Beatty ◽  
Andrea M. Hunter ◽  
Robbie A. McDonald ◽  
Emma McLaughlin ◽  
...  

2012 ◽  
Vol 42 (1) ◽  
pp. 23-37 ◽  
Author(s):  
Anna W. Schoettle ◽  
Betsy A. Goodrich ◽  
Valerie Hipkins ◽  
Christopher Richards ◽  
Julie Kray

Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations, and is threatened by rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Sixteen sites across four mountain ranges in the core distribution of P. aristata were sampled and genetic diversity was assessed with 21 isozyme loci. Low species and population level genetic diversity (He = 0.070 and 0.062, respectively) occurred with moderate among-population differentiation (FST = 0.131). Genetic diversity correlated with longitude, latitude, and elevation and a strong mountain island effect may contribute to substructuring and isolation. Using multiple complementary analyses, sampled trees were assigned to three genetic lineages that varied in diversity and admixture and were associated with different climatic factors. The distribution of genetic diversity and substructuring of P. aristata may be an outcome of a combination of restricted gene flow due to geographic and phenological isolation, random processes of genetic drift, life history traits, natural selection, and postglacial migrations. The combination of low genetic diversity, moderate population isolation, and a protracted regeneration dynamic puts populations at risk for extirpation by novel stresses.


2020 ◽  
Author(s):  
Zhanjie Qin ◽  
Chunan Tang ◽  
Xiying Zhang ◽  
Tiantian Chen ◽  
Xiangjun Liu ◽  
...  

Abstract Large evaporite provinces (LEPs) represent prodigious volumes of evaporites widely developed from the Sinian to Neogene. The reasons why they often quickly develop on a large scale with large areas and thicknesses remain enigmatic. Possible causes range from warming from above to heating from below. The fact that the salt deposits in most salt-bearing basins occur mainly in the Sinian-Cambrian, Permian-Triassic, Jurassic-Cretaceous, and Miocene intervals favours a dominantly tectonic origin rather than a solar driving mechanism. Here, we analysed the spatio-temporal distribution of evaporites based on 138 evaporitic basins and found that throughout the Phanerozoiceon, LEPs occurred across the Earth’s surface in most salt-bearing basins, especially in areas with an evolutionary history of strong tectonic activity. The masses of evaporites, rates of evaporite formation, tectonic movements, and large igneous provinces (LIPs) synergistically developed in the Sinian-Cambrian, Permian, Jurassic-Cretaceous, and Miocene intervals, which are considered to be four of the warmest times since the Sinian. We realize that salt accumulation can proceed without solar energy and can generally be linked to geothermal changes in tectonically active zones. When climatic factors are involved, they may be manifestations of the thermal influence of the crust on the surface.


2019 ◽  
Vol 13 (12) ◽  
pp. 80
Author(s):  
Yan Rizal ◽  
Aswan Aswan ◽  
Jahdi Zaim ◽  
Mika R. Puspaningrum ◽  
Wahyu D. Santoso ◽  
...  

Java is a volcanic island arc formed by the northwards subduction of the Eurasian and Australian Plates. Due to this active subduction, Java has been frequently shocked by earthquakes, which might induce tsunami events. However, there are hardly any ancient geological records of tsunami events in the area. This study aims to determine the presence and to identify sedimentary characters of tsunami deposit in Tegal Buleud, South Sukabumi, West Java. In the study area, there were 4 tsunami layers which were found as thin intercalation within the claystone layer of the Bentang Formation. Those paleotsunami deposits characterized by the occurrence of irregular/disturbed structure such as siltstone rip up, clay clasts, and flame structure occur in normal graded bedding sandstone layer. The grain-size distributions show bimodal and multimodal patterns, with mixing of marine microfossils from inner and middle neritic. The planktonic foraminiferal assemblage indicates that the age of the sediment comparable to N19 (equivalent to Late Miocene - Early Pliocene, at about 5.33 – 3.6 Ma), suggested that these paleotsunami layers were deposited due to the Mio-Pliocene tectonic activity. All the paleotsunami deposits found in Study area are the first and oldest tsunami deposit recorded in Java even in Indonesia. With the discovery of the previously unexplored Late Miocene to Pliocene tsunami deposits found in the study area, the result of this study can be used as a reference for the identification of the Tertiary tsunami deposits present in other parts of Indonesia.


1979 ◽  
Vol 89 ◽  
pp. 9-18
Author(s):  
D Bridgwater ◽  
J.S Myers

The Nagssugtoqidian mobile belt is a 240 km wide zone of deformation and plutonic activity which cuts across the Archaean craton of East Greenland. The belt was established 2600 m.y. ago by the formation of vertical E-W shear zones and the syntectonic intrusion of basic dykes. Tectonic activity along the E-W shear zones was followed by the emplacement of tonalitic intrusions, the Blokken gneisses, 2350 m.y. ago in the central parts of the mobile belt. The emplacement of the Blokken gneisses was accompanied and followed by further emplacement of basic dykes. These are synplutonic in the centre of the mobile belt but are emplaced into more rigid crust in the marginal areas of the belt and in the Archaean craton to the north and south. During a second major tectonic and thermal episode circa 1900 m.y. ago, the region was deformed by thrusting from the north. In the southem part of the mobile belt the earlier steep shear zones are cut by shear zones dipping gently northwards in which rocks are downgraded to greenschist facies. The grade of metamorphism increases northwards and shear zones are replaced by open folds with axial surfaces which dip gently northwards. The increasing ductility in the centre of and northem part of the belt is associated with the intrusion of charnockitic plutons and their granulite facies aureoles. Regional uplift occurred before the intrusion of high level post-tectonic plutons of diorite and granite 1550 m.y. ago.


2016 ◽  
Author(s):  
Rui J. Costa ◽  
Hilde Wilkinson-Herbots

AbstractThe isolation-with-migration (IM) model is commonly used to make inferences about gene flow during speciation, using polymorphism data. However, Becquet and Przeworski (2009) report that the parameter estimates obtained by fitting the IM model are very sensitive to the model's assumptions (including the assumption of constant gene flow until the present). This paper is concerned with the isolation-with-initial-migration (IIM) model of Wilkinson-Herbots (2012), which drops precisely this assumption. In the IIM model, one ancestral population divides into two descendant subpopulations, between which there is an initial period of gene flow and a subsequent period of isolation. We derive a very fast method of fitting an extended version of the IIM model, which also allows for asymmetric gene flow and unequal population sizes. This is a maximum-likelihood method, applicable to data on the number of segregating sites between pairs of DNA sequences from a large number of independent loci. In addition to obtaining parameter estimates, our method can also be used to distinguish between alternative models representing different evolutionary scenarios, by means of likelihood ratio tests. We illustrate the procedure on pairs of Drosophila sequences from approximately 30,000 loci. The computing time needed to fit the most complex version of the model to this data set is only a couple of minutes. The R code to fit the IIM model can be found in the supplementary files of this paper.


Sign in / Sign up

Export Citation Format

Share Document