scholarly journals Overexpression of BBX18 Promotes Thermomorphogenesis Through the PRR5-PIF4 Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
Geonhee Hwang ◽  
Jeeyoon Park ◽  
Soohwan Kim ◽  
Jeonghyang Park ◽  
Dain Seo ◽  
...  

Thermomorphogenesis is the morphological response of plants to an elevation in the ambient temperature, which is mediated by the bHLH transcription factor PIF4. The evening-expressed clock component, PRR5, directly represses the expression of PIF4 mRNA. Additionally, PRR5 interacts with PIF4 protein and represses its transactivation activity, which in turn suppresses the thermoresponsive growth in the evening. Here, we found that the B-box zinc finger protein, BBX18, interacts with PRR5 through the B-Box2 domain. Deletion of the B-Box2 domain abolished the functions of BBX18, including the stimulation of PIF4 mRNA expression and hypocotyl growth. Overexpression of BBX18, and not of B-Box2-deleted BBX18, restored the expression of thermoresponsive genes in the evening. We further show that BBX18 prevents PRR5 from inhibiting PIF4-mediated high temperature responses. Taken together, our results suggest that BBX18 regulates thermoresponsive growth through the PRR5-PIF4 pathway.

Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3370-3381 ◽  
Author(s):  
Ingrid Saba ◽  
Christian Kosan ◽  
Lothar Vassen ◽  
Tarik Möröy

Abstract T cells originate from early T lineage precursors that have entered the thymus and differentiate through well-defined steps. Mice deficient for the BTB/POZ domain of zinc finger protein-1 (Miz-1) almost entirely lack early T lineage precursors and have a CD4−CD8− to CD4+CD8+ block causing a strong reduction in thymic cellularity. Miz-1ΔPOZ pro-T cells cannot differentiate in vitro and are unable to relay signals from the interleukin-7R (IL-7R). Both STAT5 phosphorylation and Bcl-2 up-regulation are perturbed. The high expression levels of SOCS1 found in Miz-1ΔPOZ cells probably cause these alterations. Moreover, Miz-1 can bind to the SOCS1 promoter, suggesting that Miz-1 deficiency causes a deregulation of SOCS1. Transgenic overexpression of Bcl-2 or inhibition of SOCS1 restored pro-T cell numbers and their ability to differentiate, supporting the hypothesis that Miz-1 is required for the regulation of the IL-7/IL-7R/STAT5/Bcl-2 signaling pathway by monitoring the expression levels of SOCS1.


2009 ◽  
Vol 23 (4) ◽  
pp. 497-509 ◽  
Author(s):  
Haichuan Duan ◽  
Nadia Cherradi ◽  
Jean-Jacques Feige ◽  
Colin Jefcoate

Abstract Star is expressed in steroidogenic cells as 3.5- and 1.6-kb transcripts that differ only in their 3′-untranslated regions (3′-UTR). In mouse MA10 testis and Y-1 adrenal lines, Br-cAMP preferentially stimulates 3.5-kb mRNA. ACTH is similarly selective in primary bovine adrenocortical cells. The 3.5-kb form harbors AU-rich elements (AURE) in the extended 3′-UTR, which enhance turnover. After peak stimulation of 3.5-kb mRNA, degradation is seen. Star mRNA turnover is enhanced by the zinc finger protein ZFP36L1/TIS11b, which binds to UAUUUAUU repeats in the extended 3′-UTR. TIS11b is rapidly stimulated in each cell type in parallel with Star mRNA. Cotransfection of TIS11b selectively decreases cytomegalovirus-promoted Star mRNA and luciferase-Star 3′-UTR reporters harboring the extended 3′-UTR. Direct complex formation was demonstrated between TIS11b and the extended 3′-UTR of the 3.5-kb Star. AURE mutations revealed that TIS11b-mediated destabilization required the first two UAUUUAUU motifs. HuR, which also binds AURE, did not affect Star expression. Targeted small interfering RNA knockdown of TIS11b specifically enhanced stimulation of 3.5-kb Star mRNA in bovine adrenocortical cells, MA-10, and Y-1 cells but did not affect the reversals seen after peak stimulation. Direct transfection of Star mRNA demonstrated that Br-cAMP stimulated a selective turnover of 3.5-kb mRNA independent of AURE, which may correspond to these reversal processes. Steroidogenic acute regulatory (STAR) protein induction was halved by TIS11b knockdown, concomitant with decreased cholesterol metabolism. TIS11b suppression of 3.5-kb mRNA is therefore surprisingly coupled to enhanced Star translation leading to increased cholesterol metabolism.


Cell ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 109-119 ◽  
Author(s):  
Alice P Tsang ◽  
Jane E Visvader ◽  
C.Alexander Turner ◽  
Yuko Fujiwara ◽  
Channing Yu ◽  
...  

2012 ◽  
Vol 10 (7) ◽  
pp. 783-791 ◽  
Author(s):  
Manju Gupta ◽  
Russell C. DeKelver ◽  
Asha Palta ◽  
Carla Clifford ◽  
Sunita Gopalan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document