scholarly journals The Paeonia qiui R2R3-MYB Transcription Factor PqMYB113 Positively Regulates Anthocyanin Accumulation in Arabidopsis thaliana and Tobacco

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaokun Liu ◽  
Jingjing Duan ◽  
Dan Huo ◽  
Qinqin Li ◽  
Qiaoyun Wang ◽  
...  

Paeonia qiui is a wild species of tree peony native to China. Its leaves are purplish red from the bud germination to the flowering stage, and anthocyanin is the main pigment in purplish red leaves. However, the anthocyanin synthesis regulation mechanism in tree peony leaves remains unclear. In this study, an R2R3-MYB, PqMYB113 was identified from the leaves of P. qiui. Phylogenetic analysis revealed that PqMYB113 clustered with Liquidambar LfMYB113 and grape VvMYBA6. Subcellular location analysis showed that PqMYB113 was located in the cell nucleus. The transient reporter assay suggested that PqMYB113 was a transcriptional activator. The overexpression of PqMYB113 in Arabidopsis thaliana and tobacco (Nicotiana tabacum) resulted in increased anthocyanin accumulation and the upregulation of CHS, F3H, F3’H, DFR, and ANS. The dual luciferase reporter assay showed that PqMYB113 could activate the promoters of PqDFR and PqANS. Bimolecular fluorescence complementation assays and yeast two-hybrid assays suggested that PqMYB113 could form a ternary MBW complex with PqbHLH1 and PqWD40 cofactors. These results provide insight into the regulation of anthocyanin biosynthesis in tree peony leaves.

2020 ◽  
Vol 47 (5) ◽  
pp. 454
Author(s):  
Jian Li ◽  
Tian Chen ◽  
Fengzhen Huang ◽  
Penghui Dai ◽  
Fuxiang Cao ◽  
...  

Serious seed abortion of dove tree (Davidia involucrate Baill.) is one of the critical factors leading to the low fecundity of this species. Seed abortion is a complicated process and various factors have been verified to synergistically determine the fate of seeds. To reveal the mechanism of seed abortion in D. involucrata, we performed transcriptome analysis in normal and abortive seeds of D. involucrata. According to the transcriptome data, we noticed that most of the genes encoding a MYB transcription factor were predominantly expressed in abortive seeds. Among these, a gene named DiMYB1 was selected and its function was validated in this study. Overexpression of DiMYB1 resulted in obviously reduced viability of transgenic seeds and seedlings, and caused a significantly higher seed abortion rate. The vegetative growth of transgenic plants was hindered, resulting in an earlier flowering time. In addition, colour changes occurred in transgenic plants. Some transgenic sprouts, stems and pods appeared purple instead of green in colour. Our finding demonstrated that DiMYB1 participates in multiple plant developmental processes, especially in seed development in Arabidopsis thaliana (L.) Heynh., which indicated the similar role of this gene in D. involucrata.


2013 ◽  
Vol 55 (11) ◽  
pp. 1166-1178 ◽  
Author(s):  
Yanjie Zhang ◽  
Wanqi Liang ◽  
Jianxin Shi ◽  
Jie Xu ◽  
Dabing Zhang

2019 ◽  
Vol 61 (2) ◽  
pp. 318-330 ◽  
Author(s):  
Ding Huang ◽  
Zhouzhou Tang ◽  
Jialing Fu ◽  
Yue Yuan ◽  
Xiuxin Deng ◽  
...  

Abstract Anthocyanins are preferentially accumulated in certain tissues of particular species of citrus. A R2R3-MYB transcription factor (named Ruby1) has been well documented as an activator of citrus anthocyanin biosynthesis. In this study, we characterized CsMYB3, a transcriptional repressor that regulates anthocyanin biosynthesis in citrus. CsMYB3 was expressed in anthocyanin-pigmented tissues, and the expression was closely associated with that of Ruby1, which is a key anthocyanin activator. Overexpression of CsMYB3 in Arabidopsis resulted in a decrease in anthocyanins under nitrogen stress. Overexpression of CsMYB3 in the background of CsRuby1-overexpressing strawberry and Arabidopsis reduced the anthocyanin accumulation level. Transient promoter activation assays revealed that CsMYB3 could repress the activation capacity of the complex formed by CsRuby1/CsbHLH1 for the anthocyanin biosynthetic genes. Moreover, CsMYB3 could be transcriptionally activated by CsRuby1 via promoter binding, thus forming an ‘activator-and-repressor’ loop to regulate anthocyanin biosynthesis in citrus. This study shows that CsMYB3 plays a repressor role in the regulation of anthocyanin biosynthesis and proposes an ‘activator-and-repressor’ loop model constituted by CsRuby1 and CsMYB3 in the regulation of anthocyanin biosynthesis in citrus.


2005 ◽  
Vol 15 (13) ◽  
pp. 1201-1206 ◽  
Author(s):  
Yun-Kuan Liang ◽  
Christian Dubos ◽  
Ian C. Dodd ◽  
Geoffrey H. Holroyd ◽  
Alistair M. Hetherington ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Hu ◽  
Xiaomeng Yue ◽  
Jinxue Song ◽  
Guipei Xing ◽  
Jun Chen ◽  
...  

Soybean sprouts are a flavorful microgreen that can be eaten all year round and are widely favored in Southeast Asia. In this study, the regulatory mechanism of calcium on anthocyanin biosynthesis in soybean sprouts under blue light was investigated. The results showed that blue light, with a short wavelength, effectively induced anthocyanin accumulation in the hypocotyl of soybean sprout cultivar “Dongnong 690.” Calcium supplementation further enhanced anthocyanin content, which was obviously inhibited by LaCl3 and neomycin treatment. Moreover, exogenous calcium changed the metabolism of anthocyanins, and seven anthocyanin compounds were detected. The trend of calcium fluorescence intensity in hypocotyl cells, as well as that of the inositol 1,4,5-trisphosphate and calmodulin content, was consistent with that of anthocyanins content. Specific spatial distribution patterns of calcium antimonate precipitation were observed in the ultrastructure of hypocotyl cells under different conditions. Furthermore, calcium application upregulated the expression of genes related to anthocyanin biosynthesis, and calcium inhibitors suppressed these genes. Finally, transcriptomics was performed to gain global insights into the molecular regulation mechanism of calcium-associated anthocyanin production. Genes from the flavonoid biosynthesis pathway were distinctly enriched among the differentially expressed genes, and weighted gene co-expression network analysis showed that two MYBs were related to the accumulation of anthocyanins. These results indicated that calcium released from apoplast and intracellular stores in specific spatial-temporal features promote blue light-induced anthocyanin accumulation by upregulation of the expression of genes related to anthocyanin synthesis of “Dongnong 690” hypocotyl. The findings deepen the understanding of the calcium regulation mechanism of blue light-induced anthocyanin accumulation in soybean sprouts, which will help growers produce high-quality foods beneficial for human health.


2021 ◽  
Vol 22 (20) ◽  
pp. 10927
Author(s):  
Da-Hye Kim ◽  
Jundae Lee ◽  
JuHee Rhee ◽  
Jong-Yeol Lee ◽  
Sun-Hyung Lim

The red or purple color of radish (Raphanus sativus L.) taproots is due to anthocyanins, which have nutritional and aesthetic value, as well as antioxidant properties. Moreover, the varied patterns and levels of anthocyanin accumulation in radish roots make them an interesting system for studying the transcriptional regulation of anthocyanin biosynthesis. The R2R3 MYB transcription factor RsMYB1 is a key positive regulator of anthocyanin biosynthesis in radish. Here, we isolated an allele of RsMYB1, named RsMYB1Short, in radish cultivars with white taproots. The RsMYB1Short allele carried a 4 bp insertion in the first exon causing a frame-shift mutation of RsMYB1, generating a truncated protein with only a partial R2 domain at the N-terminus. Unlike RsMYB1Full, RsMYB1Short was localized to the nucleus and the cytoplasm and failed to interact with their cognate partner RsTT8. Transient expression of genomic or cDNA sequences for RsMYB1Short in radish cotyledons failed to induce anthocyanin accumulation, but that for RsMYB1Full activated it. Additionally, RsMYB1Short showed the lost ability to induce pigment accumulation and to enhance the transcript level of anthocyanin biosynthetic genes, while RsMYB1Full promoted both processes when co-expressed with RsTT8 in tobacco leaves. As the result of the transient assay, co-expressing RsTT8 and RsMYB1Full, but not RsMYB1Short, also enhanced the promoter activity of RsCHS and RsDFR. We designed a molecular marker for RsMYB1 genotyping, and revealed that the RsMYB1Short allele is common in white radish cultivars, underscoring the importance of variation at the RsMYB1 locus in anthocyanin biosynthesis in the radish taproot. Together, these results indicate that the nonsense mutation of RsMYB1 generated the truncated protein, RsMYB1Short, that had the loss of ability to regulate anthocyanin biosynthesis. Our findings highlight that the frame shift mutation of RsMYB1 plays a key role in anthocyanin biosynthesis in the radish taproot.


Sign in / Sign up

Export Citation Format

Share Document