scholarly journals Exercise Similarly Facilitates Men and Women’s Selective Attention Task Response Times but Differentially Affects Memory Task Performance

2018 ◽  
Vol 9 ◽  
Author(s):  
Matt Coleman ◽  
Kelsey Offen ◽  
Julie Markant
2019 ◽  
Author(s):  
Aeron Laffere ◽  
Fred Dick ◽  
Adam Tierney

AbstractHow does the brain follow a sound that is mixed with others in a noisy environment? A possible strategy is to allocate attention to task-relevant time intervals while suppressing irrelevant intervals - a strategy that could be implemented by aligning neural modulations with critical moments in time. Here we tested whether selective attention to non-verbal sound streams is linked to shifts in the timing of attentional modulations of EEG activity, and investigated whether this neural mechanism can be enhanced by short-term training and musical experience. Participants performed a memory task on a target auditory stream presented at 4 Hz while ignoring a distractor auditory stream also presented at 4 Hz, but with a 180-degree shift in phase. The two attention conditions were linked to a roughly 180-degree shift in phase in the EEG signal at 4 Hz. Moreover, there was a strong relationship between performance on the 1-back task and the timing of the EEG modulation with respect to the attended band. EEG modulation timing was also enhanced after several days of training on the selective attention task and enhanced in experienced musicians. These results support the hypothesis that modulation of neural timing facilitates attention to particular moments in time and indicate that phase timing is a robust and reliable marker of individual differences in auditory attention. Moreover, these results suggest that nonverbal selective attention can be enhanced in the short term by only a few hours of practice and in the long term by years of musical training.


2017 ◽  
Author(s):  
Rasa Gulbinaite ◽  
Tara van Viegen ◽  
Martijn Wieling ◽  
Michael X Cohen ◽  
Rufin VanRullen

ABSTRACTRhythmic visual stimulation (“flicker”) is primarily used to “tag” processing of low-level visual and high-level cognitive phenomena. However, preliminary evidence suggests that flicker may also entrain endogenous brain oscillations, thereby modulating cognitive processes supported by those brain rhythms. Here we tested the interaction between 10 Hz flicker and endogenous alpha-band (~10 Hz) oscillations during a selective visuospatial attention task. We recorded EEG from human participants (both genders) while they performed a modified Eriksen flanker task in which distractors and targets flickered within (10 Hz) or outside (7.5 or 15 Hz) the alpha band. By using a combination of EEG source separation, time-frequency, and single-trial linear mixed effects modeling, we demonstrate that 10 Hz flicker interfered with stimulus processing more on incongruent than congruent trials (high vs. low selective attention demands). Crucially, the effect of 10 Hz flicker on task performance was predicted by the distance between 10 Hz and individual alpha peak frequency (estimated during the task). Finally, the flicker effect on task performance was more strongly predicted by EEG flicker responses during stimulus processing than during preparation for the upcoming stimulus, suggesting that 10 Hz flicker interfered more with reactive than proactive selective attention. These findings are consistent with our hypothesis that visual flicker entrained endogenous alpha-band networks, which in turn impaired task performance. Our findings also provide novel evidence for frequency-dependent exogenous modulation of cognition that is determined by the correspondence between the exogenous flicker frequency and the endogenous brain rhythms.SignificanceHere we provide novel evidence that the interaction between exogenous rhythmic visual stimulation and endogenous brain rhythms can have frequency-specific behavioral effects. We show that alpha-band (10 Hz) flicker impairs stimulus processing in a selective attention task when the stimulus flicker rate matches individual alpha peak frequency. The effect of sensory flicker on task performance was stronger when selective attention demands were high, and was stronger during stimulus processing and response selection compared to the pre-stimulus anticipatory period. These findings provide novel evidence that frequency-specific sensory flicker affects online attentional processing, and also demonstrate that the correspondence between exogenous and endogenous rhythms is an overlooked prerequisite when testing for frequency-specific cognitive effects of flicker.


2005 ◽  
Vol 19 (1) ◽  
pp. 35-49 ◽  
Author(s):  
Monika Althaus ◽  
H. Karin Gomarus ◽  
Albertus A. Wijers ◽  
Lambertus J.M. Mulder ◽  
José L. van Velzen ◽  
...  

Abstract. We investigated the performance on a selective attention task in two groups of 8- to 12-year-old healthy children being characterized as extraverted and introverted, respectively. During task performance EEG-activity was recorded to investigate differential effects on a specific selection-related potential, the N2b. Cardiac activity was recorded continuously before, during and after task performance. Spectral energy was computed for three distinguishable frequency bands corresponding with a low (LF), mid- (MF), and high-frequency (HF) component in heart rate variability (HRV). The extraverted children were found to show greater perceptual sensitivity in response to irrelevant information. They also exhibited a greater N2b-component while showing significantly greater decreases in, particularly, the LF- and MF-power of HRV during task performance as compared to baseline periods. The magnitude of the N2b and the task-related decreases in LF-power of HRV were found to correlate significantly with the degree of extraversion and task performance, as well as with each other. The findings are discussed in the light of how selective attention and changes in physiological state may be related to the children's temperament.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Runa Stefansdottir ◽  
Hilde Gundersen ◽  
Vaka Rognvaldsdottir ◽  
Alexander S. Lundervold ◽  
Sunna Gestsdottir ◽  
...  

Abstract In laboratory studies, imposed sleep restriction consistently reduces cognitive performance. However, the association between objectively measured, free-living sleep and cognitive function has not been studied in older adolescents. To address this gap, we measured one week of sleep with a wrist-worn GT3X+ actigraph in 160 adolescents (96 girls, 17.7 ± 0.3 years) followed by assessment of working memory with an n-back task and visual attention with a Posner cue-target task. Over the week, participants spent 7.1 ± 0.8 h/night in bed and slept 6.2 ± 0.8 h/night with 88.5 ± 4.8% efficiency and considerable intra-participant night-to-night variation, with a standard deviation in sleep duration of 1.2 ± 0.7 h. Sleep measures the night before cognitive testing were similar to weekly averages. Time in bed the night before cognitive testing was negatively associated with response times during the most challenging memory task (3-back; p = 0.005). However, sleep measures the night before did not correlate with performance on the attention task and weekly sleep parameters were not associated with either cognitive task. Our data suggests shorter acute free-living sleep may negatively impact difficult memory tasks, however the relationship between free-living sleep and cognitive task performance in healthy adolescents is less clear than that of laboratory findings, perhaps due to high night-to-night sleep variation.


2017 ◽  
Vol 31 (2) ◽  
pp. 49-66 ◽  
Author(s):  
Eva-Maria Reuter ◽  
Claudia Voelcker-Rehage ◽  
Solveig Vieluf ◽  
Franca Parianen Lesemann ◽  
Ben Godde

Abstract. Older adults recruit relatively more frontal as compared to parietal resources in a variety of cognitive and perceptual tasks. It is not yet clear whether this parietal-to-frontal shift is a compensatory mechanism, or simply reflects a reduction in processing efficiency. In this study we aimed to investigate how the parietal-to-frontal shift with aging relates to selective attention. Fourteen young and 26 older healthy adults performed a color Flanker task under three conditions (incongruent, congruent, neutral) and event-related potentials (ERPs) were measured. The P3 was analyzed for the electrode positions Pz, Cz, and Fz as an indicator of the parietal-to-frontal shift. Further, behavioral performance and other ERP components (P1 and N1 at electrodes O1 and O2; N2 at electrodes Fz and Cz) were investigated. First young and older adults were compared. Older adults had longer response times, reduced accuracy, longer P3 latencies, and a more frontal distribution of P3 than young adults. These results confirm the parietal-to-frontal shift in the P3 with age for the selective attention task. Second, based on the differences between frontal and parietal P3 activity the group of older adults was subdivided into those showing a rather equal distribution of the P3 and older participants showing a strong frontal focus of the P3. Older adults with a more frontally distributed P3 had longer response times than participants with a more equally distributed P3. These results suggest that the frontally distributed P3 observed in older adults has no compensatory function in selective attention but rather indicates less efficient processing and slowing with age.


2002 ◽  
Vol 13 (3-4) ◽  
pp. 95-104 ◽  
Author(s):  
Shai Danziger ◽  
Robert Ward ◽  
Vanessa Owen ◽  
Robert Rafal

The effects of damage to the pulvinar nucleus of the thalamus in humans on reflexive orienting and selective attention were investigated. In a spatial orienting task three patients with unilateral pulvinar damage determined the location of a visual target that followed a cue that was not informative as to the targets location. Contralesional targets were responded to more slowly than ipsilesional targets. Also, at long cue target intervals patients responses to contralesional targets that appeared at previously cued locations were slower than to non-cued locations indicating that pulvinar damage does not affect inhibition of return. In the selective attention task two of the patients identified a target that appeared at one level of a global-local hierarchical stimulus while ignoring a distractor present at the other level. The distractor indicated either the same response as the target or a different response. Response times to targets in both visual fields were similar as were interference effects from the ignored distractors. These data indicate that engaging attention contralesionally is not impaired in discrimination tasks and that filtering of irrelevant information was not impaired contralesionally.


2018 ◽  
Author(s):  
Nicola Jane Holt ◽  
Leah Furbert ◽  
Emily Sweetingham

The current research sought to replicate and extend work suggesting that coloring can reduce anxiety, asking whether coloring can improve cognitive performance. In two experiments undergraduates (N = 47; N = 52) colored and participated in a control condition. Subjective and performance measures of mood and mindfulness were included: an implicit mood test (Experiment 1) and a selective attention task (Experiment 2) along with a divergent thinking test. In both experiments coloring significantly reduced anxiety and increased mindfulness compared with control and baseline scores. Following coloring participants scored significantly lower on implicit fear, than the control condition, and significantly higher on selective attention and original ideation. Coloring may not only reduce anxiety, but also improve mindful attention and creative cognition.


1998 ◽  
Vol 30 (1-2) ◽  
pp. 191-192
Author(s):  
S. Hayashida ◽  
S.-I. Niwa ◽  
K. Kobayashi ◽  
K. Itoh

2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Ming D. Lim ◽  
Damian P. Birney

Emotional intelligence (EI) refers to a set of competencies to process, understand, and reason with affective information. Recent studies suggest ability measures of experiential and strategic EI differentially predict performance on non-emotional and emotionally laden tasks. To explore cognitive processes underlying these abilities further, we varied the affective context of a traditional letter-based n-back working-memory task. In study 1, participants completed 0-, 2-, and 3-back tasks with flanking distractors that were either emotional (fearful or happy faces) or non-emotional (shapes or letters stimuli). Strategic EI, but not experiential EI, significantly influenced participants’ accuracy across all n-back levels, irrespective of flanker type. In Study 2, participants completed 1-, 2-, and 3-back levels. Experiential EI was positively associated with response times for emotional flankers at the 1-back level but not other levels or flanker types, suggesting those higher in experiential EI reacted slower on low-load trials with affective context. In Study 3, flankers were asynchronously presented either 300 ms or 1000 ms before probes. Results mirrored Study 1 for accuracy rates and Study 2 for response times. Our findings (a) provide experimental evidence for the distinctness of experiential and strategic EI and (b) suggest that each are related to different aspects of cognitive processes underlying working memory.


Sign in / Sign up

Export Citation Format

Share Document