scholarly journals Positivity Effect and Working Memory Performance Remains Intact in Older Adults After Sleep Deprivation

2019 ◽  
Vol 10 ◽  
Author(s):  
Andreas Gerhardsson ◽  
Håkan Fischer ◽  
Mats Lekander ◽  
Göran Kecklund ◽  
John Axelsson ◽  
...  
2018 ◽  
Author(s):  
Andreas Gerhardsson ◽  
Håkan Fischer ◽  
Mats Lekander ◽  
Göran Kecklund ◽  
John Axelsson ◽  
...  

Background: Older adults perform better in tasks which include positive stimuli, referred to as the positivity effect. However, recent research suggests that the positivity effect could be attenuated when additional challenges such as stress or cognitive demands are introduced. Moreover, it is well established that older adults are relatively resilient to many of the adverse effects of sleep deprivation. Our aim was to investigate if the positivity effect in older adults is affected by one night of total sleep deprivation using an emotional working memory task. Methods: A healthy sample of 48 older adults (60-72 years) was either sleep deprived for one night (n = 24) or had a normal night’s sleep (n = 24). They performed an emotional working memory n-back (n = 1 & 3) task containing positive, negative and neutral pictures. Results: Performance in terms of accuracy and reaction times was best for positive stimuli and worst for negative stimuli. This positivity effect was not altered by sleep deprivation. Results also showed that, despite significantly increased sleepiness, there was no effect of sleep deprivation on working memory performance. A working memory load × valence interaction on the reaction times revealed that the beneficial effect of positive stimuli was only present in the 1-back condition. Conclusion: While the positivity effect and general working memory abilities in older adults are intact after one night of sleep deprivation, increased cognitive demand attenuates the positivity effect on working memory speed.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


Author(s):  
Barbara Carretti ◽  
Erika Borella ◽  
Rossana De Beni

Abstract. The paper examines the effect of strategic training on the performance of younger and older adults in an immediate list-recall and a working memory task. The experimental groups of younger and older adults received three sessions of memory training, teaching the use of mental images to improve the memorization of word lists. In contrast, the control groups were not instructed to use any particular strategy, but they were requested to carry out the memory exercises. The results showed that strategic training improved performance of both the younger and older experimental groups in the immediate list recall and in the working memory task. Of particular interest, the improvement in working memory performance of the older experimental group was comparable to that of the younger experimental group.


2020 ◽  
pp. 1-11
Author(s):  
Yang Jiang ◽  
Juan Li ◽  
Frederick A. Schmitt ◽  
Gregory A. Jicha ◽  
Nancy B. Munro ◽  
...  

Background: Early prognosis of high-risk older adults for amnestic mild cognitive impairment (aMCI), using noninvasive and sensitive neuromarkers, is key for early prevention of Alzheimer’s disease. We have developed individualized measures in electrophysiological brain signals during working memory that distinguish patients with aMCI from age-matched cognitively intact older individuals. Objective: Here we test longitudinally the prognosis of the baseline neuromarkers for aMCI risk. We hypothesized that the older individuals diagnosed with incident aMCI already have aMCI-like brain signatures years before diagnosis. Methods: Electroencephalogram (EEG) and memory performance were recorded during a working memory task at baseline. The individualized baseline neuromarkers, annual cognitive status, and longitudinal changes in memory recall scores up to 10 years were analyzed. Results: Seven of the 19 cognitively normal older adults were diagnosed with incident aMCI for a median 5.2 years later. The seven converters’ frontal brainwaves were statistically identical to those patients with diagnosed aMCI (n = 14) at baseline. Importantly, the converters’ baseline memory-related brainwaves (reduced mean frontal responses to memory targets) were significantly different from those who remained normal. Furthermore, differentiation pattern of left frontal memory-related responses (targets versus nontargets) was associated with an increased risk hazard of aMCI (HR = 1.47, 95% CI 1.03, 2.08). Conclusion: The memory-related neuromarkers detect MCI-like brain signatures about five years before diagnosis. The individualized frontal neuromarkers index increased MCI risk at baseline. These noninvasive neuromarkers during our Bluegrass memory task have great potential to be used repeatedly for individualized prognosis of MCI risk and progression before clinical diagnosis.


2021 ◽  
Vol 13 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Jean-Philippe Antonietti ◽  
Pamela Banta Lavenex ◽  
...  

During normal aging resting-state brain activity changes and working memory performance declines as compared to young adulthood. Interestingly, previous studies reported that different electroencephalographic (EEG) measures of resting-state brain activity may correlate with working memory performance at different ages. Here, we recorded resting-state EEG activity and tested allocentric spatial working memory in healthy young (20–30 years) and older (65–75 years) adults. We adapted standard EEG methods to record brain activity in mobile participants in a non-shielded environment, in both eyes closed and eyes open conditions. Our study revealed some age-group differences in resting-state brain activity that were consistent with previous results obtained in different recording conditions. We confirmed that age-group differences in resting-state EEG activity depend on the recording conditions and the specific parameters considered. Nevertheless, lower theta-band and alpha-band frequencies and absolute powers, and higher beta-band and gamma-band relative powers were overall observed in healthy older adults, as compared to healthy young adults. In addition, using principal component and regression analyses, we found that the first extracted EEG component, which represented mainly theta, alpha and beta powers, correlated with spatial working memory performance in older adults, but not in young adults. These findings are consistent with the theory that the neurobiological bases of working memory performance may differ between young and older adults. However, individual measures of resting-state EEG activity could not be used as reliable biomarkers to predict individual allocentric spatial working memory performance in young or older adults.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S963-S963
Author(s):  
Eric S Cerino ◽  
Martin Sliwinski

Abstract Negative affect (NA) and positive affect (PA) vary from moment-to-moment and these variations are associated with cognitive health. Past work has primarily focused on valence (negative/positive), however, largely ignoring the potential import of arousal (high/low). We address this gap by assessing the impact of high and low arousal NA and PA on daily cognition. A sample of 238 older adults (Mage=77.30 years, SD=5.14, Range=70–90) completed mobile surveys up to four times daily for 14 days. Participants reported current levels of high and low arousal NA and PA and performed processing speed and working memory tasks. For processing speed, there were significant within-person affect by age interactions. Moments when low arousal NA was higher than usual were associated with slower processing speed (Est.=0.87, SE=0.44, p<.05), and this effect was amplified in older participants (Est.=1.69, SE=0.60, p<.01). Moments when high arousal PA was higher than usual were associated with faster processing speed (Est.=-0.81, SE=0.40, p<.05), and this effect was amplified in younger participants (Est.=-1.81, SE=0.56, p<.01). For working memory, a significant within-person high arousal PA by age interaction emerged (Est.=0.001, SE=0.00, p=.046) such that moments when high arousal PA was higher than usual were marginally associated with worse working memory performance only among older participants (Est.=0.004, SE=0.002, p=.06). Results suggest momentary increases in low arousal NA and high arousal PA may confer greatest risk to daily cognitive health among older adults with more limited capacity and/or cognitive resources, whereas affective influences may be more facilitative among comparatively younger adults.


2019 ◽  
Vol 34 (6) ◽  
pp. 1053-1053
Author(s):  
M Gonzalez Catalan ◽  
C Lindbergh ◽  
A Staffaroni ◽  
S Walters ◽  
K Casaletto ◽  
...  

Abstract Objective Cross-sectional studies have shown age-related differences in working memory (WM), but the trajectory is unclear due to the scarcity of longitudinal studies. Additional research is needed to better characterize the course of age-related changes in WM in older adults. The present study sought to address this gap in the literature by conducting serial assessments of WM in a longitudinally followed cohort of typically aging adults. We hypothesized a significant age × time interaction, such that WM would show pronounced declines with advancing age. Methods 640 functionally intact participants in an aging cohort (clinical dementia rating = 0; age range 52-99, mean age = 75) completed a computerized WM measure, Running Letter Memory (RLM), every ~15 months for up to 8.5 years (mean follow-up = 1.9 years). Longitudinal changes in RLM scores were analyzed using linear mixed effects models, allowing for random slopes and intercepts. All models were adjusted for sex and education. Results RLM performance did not significantly decline over time (b = -.14, p = .43). As hypothesized, there was a significant age × time interaction predicting RLM scores (b = -.08, p = .006). Specifically, RLM performance remained relatively stable (or slightly improved) until around age 75, beyond which increasingly precipitous declines were observed with advancing age. Conclusion The present results suggest that WM performance does not evidence declines until the mid-70s in typically aging adults, at which point increasingly steep decline trajectories are observed with advancing age. These findings highlight that cognitive aging does not occur at a constant rate in late life.


2019 ◽  
Vol 41 (10) ◽  
pp. 1014-1035
Author(s):  
Joelle C. Ruthig ◽  
Dmitri P. Poltavski ◽  
Thomas Petros

The positivity effect among older adults is a tendency to process more positive and/or less negative emotional stimuli compared to younger adults, with unknown upper age boundaries. Cognitive and emotional working memory were assessed in young-old adults (60–75) and very old adults (VOAs; 80+) to determine whether emotional working memory declines similar to the age-related decline of cognitive working memory. The moderating role of valence on the link between age and emotional working memory was examined to identify change in positivity effect with advanced age. Electroencephalography (EEG) markers of cognitive workload and engagement were obtained to test the theory of cognitive resource allocation in older adults’ emotional stimuli processing. EEG recordings were collected during cognitive memory task and emotional working memory tasks that required rating emotional intensity of images pairs. Results indicate a positivity effect among VOAs that does not require additional cognitive effort and is not likely to diminish with age.


Sign in / Sign up

Export Citation Format

Share Document