scholarly journals Testing the Process Dissociation Procedure by Behavioral and Neuroimaging Data: The Establishment of the Mutually Exclusive Theory and the Improved PDP

2020 ◽  
Vol 11 ◽  
Author(s):  
Jianxin Zhang ◽  
Xiangpeng Wang ◽  
Jianping Huang ◽  
Antao Chen ◽  
Dianzhi Liu

The process dissociation procedure (PDP) of implicit sequence learning states that the correct inclusion-task response contains the incorrect exclusion-task response. However, there has been no research to test the hypothesis. The current study used a single variable (Stimulus Onset Asynchrony SOA: 850 ms vs. 1350 ms) between-subjects design, with pre-task resting-state fMRI, to test and improve the classical PDP to the mutually exclusive theory (MET). (1) Behavioral data and neuroimaging data demonstrated that the classical PDP has not been validated. In the SOA = 850 ms group, the correct inclusion-task response was at chance, but the incorrect exclusion-task response occurred greater than chance. In the SOA = 850 ms group, the two responses were not correlated, but in the SOA = 1,350 ms group and putting the two groups together, the two responses were in contrast to each other. In each group, brain areas whose amplitude of low frequency fluctuations (ALFFs) in the resting-state related to the two responses were either completely different or opposite to one another. However, the results were perfectly consistent with the MET proposed by the present study which suggests that the correct inclusion-task response is equal to the correct exclusion-task response is equal to C + A1, and the incorrect exclusion-task response is equal to A2. C denotes the controlled response and A1 and A2 denote two different automatic responses. (2) The improved PDP was proposed to categorize the 12 kinds of triplets as delineating four knowledge types, namely non-acquisition of knowledge, uncontrollable knowledge, half-controllable knowledge, and controllable knowledge with the MET. ALFFs in the resting-state could predict the four knowledge types of the improved PDP among two groups. The participants’ control of the four knowledge types (degree of consciousness) gradually improved. Correspondingly, the brain areas in the resting-state positively related to the four knowledge types, gradually changed from the sensory and motor network to the somatic sensorimotor network, and then to the implicit learning network, and then to the consciousness network. The brain areas in the resting-state negatively related to the four knowledge types gradually changed from the consciousness network to the sensory and motor network. As SOA increased, the brain areas associated with almost all the four knowledge types changed. (3) The inhomogeneous hypothesis of the MET is best suited to interpret behavioral and neuroimaging data; it states that the same components among the four knowledge types are not homogeneous, and the same knowledge types are not homogeneous between the two SOA groups.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianxin Zhang ◽  
Xiangpeng Wang ◽  
Didi Zhang ◽  
Antao Chen ◽  
Dianzhi Liu

AbstractThe current study made participants sit to complete both the implicit sequence learning and the inclusion/exclusion tasks with the latter just after the former, and used eyes-closed and eyes-open resting states fMRI and their difference to test the ecological validity of the mutually exclusive theory (MET) in implicit-sequence-learning consciousness. (1) The behavioral and neuroimaging data did not support the process dissociation procedure, but did fit well with the MET. The correct inclusion-task response and the incorrect exclusion-task response were mutually exclusive with each other. The relevant brain areas of the two responses were either different or opposite in the eyes-closed and eyes-open resting-states and their difference. (2) ALFFs in eyes-closed and eyes-open resting-states and their difference were diversely related to the four MET knowledge in implicit sequence learning. The relevant brain areas of the four MET knowledge in the eyes-closed and eyes-open resting-state were the cerebral cortex responsible for vision, attention, cognitive control and consciousness, which could be called the upper consciousness network, and there were more relevant brain areas in the eyes-open resting-state than in the eye-closed resting-state.The relevant brain areas in ALFFs-difference were the subcortical nucleus responsible for sensory awareness, memory and implicit sequence learning, which could be called the lower consciousness network. ALFFs-difference could predict the four MET knowledge as a quantitative transition sensitivity index from internal feeling to external stimulus. (3) The relevant resting-state brain areas of the four MET knowledge were either different (for most brain areas, if some brain areas were related to one MET knowledge, they were not related to the other three MET knowledge) or opposite (for some brain areas, if some brain areas were positively related to one MET knowledge, they were negatively related to other MET knowledge). With the participants' control/consciousness level increasing from no-acquisition to controllable knowledge step by step, the positively relevant resting-state brain areas of the four MET knowledge changed from some consciousness network and the motor network, to some consciousness network and the implicit learning network, and then to some consciousness network; and the negatively relevant resting-state brain areas of the four MET knowledge changed from some consciousness network and visual perception network, to some consciousness network, then to some consciousness network and the motor network, and then to some consciousness network, the implicit learning network, and the motor network. In conclusion, the current study found the ecological validity of the MET was good in sitting posture and eyes-closed and eyes-open resting-states, ALFFs in eyes-closed and eyes-open resting-states and their difference could predict the four MET knowledge diversely, and the four MET knowledge had different or opposite relevant resting-state brain areas.


2021 ◽  
Vol 5 ◽  
pp. 239821282110554
Author(s):  
Vasileia Kotoula ◽  
Toby Webster ◽  
James Stone ◽  
Mitul A Mehta

Acute ketamine administration has been widely used in neuroimaging research to mimic psychosis-like symptoms. Within the last two decades, ketamine has also emerged as a potent, fast-acting antidepressant. The delayed effects of the drug, observed 2–48 h after a single infusion, are associated with marked improvements in depressive symptoms. At the systems’ level, several studies have investigated the acute ketamine effects on brain activity and connectivity; however, several questions remain unanswered around the brain changes that accompany the drug’s antidepressant effects and how these changes relate to the brain areas that appear with altered function and connectivity in depression. This review aims to address some of these questions by focusing on resting-state brain connectivity. We summarise the studies that have examined connectivity changes in treatment-naïve, depressed individuals and those studies that have looked at the acute and delayed effects of ketamine in healthy and depressed volunteers. We conclude that brain areas that are important for emotional regulation and reward processing appear with altered connectivity in depression whereas the default mode network presents with increased connectivity in depressed individuals compared to healthy controls. This finding, however, is not as prominent as the literature often assumes. Acute ketamine administration causes an increase in brain connectivity in healthy volunteers. The delayed effects of ketamine on brain connectivity vary in direction and appear to be consistent with the drug normalising the changes observed in depression. The limited number of studies however, as well as the different approaches for resting-state connectivity analysis make it very difficult to draw firm conclusions and highlight the importance of data sharing and larger future studies.


2009 ◽  
Vol 101 (3) ◽  
pp. 1294-1308 ◽  
Author(s):  
Edmund T. Rolls ◽  
Fabian Grabenhorst ◽  
Leonardo Franco

Decoding and information theoretic techniques were used to analyze the predictions that can be made from functional magnetic resonance neuroimaging data on individual trials. The subjective pleasantness produced by warm and cold applied to the hand could be predicted on single trials with typically in the range 60–80% correct from the activations of groups of voxels in the orbitofrontal and medial prefrontal cortex and pregenual cingulate cortex, and the information available was typically in the range 0.1–0.2 (with a maximum of 0.6) bits. The prediction was typically a little better with multiple voxels than with one voxel, and the information increased sublinearly with the number of voxels up to typically seven voxels. Thus the information from different voxels was not independent, and there was considerable redundancy across voxels. This redundancy was present even when the voxels were from different brain areas. The pairwise stimulus-dependent correlations between voxels, reflecting higher-order interactions, did not encode significant information. For comparison, the activity of a single neuron in the orbitofrontal cortex can predict with 90% correct and encode 0.5 bits of information about whether an affectively positive or negative visual stimulus has been shown, and the information encoded by small numbers of neurons is typically independent. In contrast, the activation of a 3 × 3 × 3-mm voxel reflects the activity of ∼0.8 million neurons or their synaptic inputs and is not part of the information encoding used by the brain, thus providing a relatively poor readout of information compared with that available from small populations of neurons.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Andreas A. Ioannides ◽  
Stavros I. Dimitriadis ◽  
George A. Saridis ◽  
Marotesa Voultsidou ◽  
Vahe Poghosyan ◽  
...  

How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.


2022 ◽  
Author(s):  
Fatemeh Tabassi Mofrad ◽  
Niels O. Schiller

The cytoarchitectonically tripartite organization of the inferior parietal cortex (IPC) into the rostral, the middle and the caudal clusters has been generally ignored when associating different functions to this part of the cortex, resulting in inconsistencies about how IPC is understood. In this study, we investigated the patterns of functional connectivity of the caudal IPC in a task requiring cognitive control of language, using multiband EPI. This part of the cortex demonstrated functional connectivity patterns dissimilar to a cognitive control area and at the same time the caudal IPC showed negative functional associations with both task-related brain areas and the precuneus cortex, which is active during resting state. We found evidence suggesting that the traditional categorization of different brain areas into either task-related or resting state-related networks cannot accommodate the functions of the caudal IPC. This underlies the hypothesis about a modulating cortical area proposing that its involvement in task performance, in a modulating manner, is marked by deactivation in the patterns of functional associations with parts of the brain that are recognized to be involved in doing a task, proportionate to task difficulty; however, their patterns of functional connectivity in some other respects do not correspond to the resting state-related parts of the cortex.


2017 ◽  
Vol 118 (2) ◽  
pp. 1235-1243 ◽  
Author(s):  
Heather R. McGregor ◽  
Paul L. Gribble

We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke.


2018 ◽  
Vol 39 (1) ◽  
pp. 25-43
Author(s):  
Jack P. Solomon ◽  
Sarah N. Kraeutner ◽  
Shaun G. Boe

For motor imagery (MI) to be effective for motor learning and rehabilitation, one must be able to perform it. The covert nature of MI makes it difficult to objectively assess MI ability. Assessment of MI ability is particularly pertinent in clinical populations, where brain damage can preclude the ability to perform it. To aid assessment of MI ability, we developed MiScreen, a mobile application that uses MI-based training through which individuals implicitly learn. The logic behind MiScreen is that if an individual can learn via MI, they must be able to perform it. Here we apply process dissociation procedure (PDP) to the data resulting from the MI-based training underlying MiScreen to address the limitations of MiScreen that reduce its applicability. Our results show that the use of PDP increases the number of users for which MiScreen would be applicable, demonstrating added value. Incongruence between PDP and current analysis procedures highlights the need for future work to identify the optimal analysis that best represents MI-based learning, and thus MI ability.


2011 ◽  
Vol 23 (3) ◽  
pp. 570-578 ◽  
Author(s):  
Audrey Vanhaudenhuyse ◽  
Athena Demertzi ◽  
Manuel Schabus ◽  
Quentin Noirhomme ◽  
Serge Bredart ◽  
...  

Evidence from functional neuroimaging studies on resting state suggests that there are two distinct anticorrelated cortical systems that mediate conscious awareness: an “extrinsic” system that encompasses lateral fronto-parietal areas and has been linked with processes of external input (external awareness), and an “intrinsic” system which encompasses mainly medial brain areas and has been associated with internal processes (internal awareness). The aim of our study was to explore the neural correlates of resting state by providing behavioral and neuroimaging data from healthy volunteers. With no a priori assumptions, we first determined behaviorally the relationship between external and internal awareness in 31 subjects. We found a significant anticorrelation between external and internal awareness with a mean switching frequency of 0.05 Hz (range: 0.01–0.1 Hz). Interestingly, this frequency is similar to BOLD fMRI slow oscillations. We then evaluated 22 healthy volunteers in an fMRI paradigm looking for brain areas where BOLD activity correlated with “internal” and “external” scores. Activation of precuneus/posterior cingulate, anterior cingulate/mesiofrontal cortices, and parahippocampal areas (“intrinsic system”) was linearly linked to intensity of internal awareness, whereas activation of lateral fronto-parietal cortices (“extrinsic system”) was linearly associated with intensity of external awareness.


Sign in / Sign up

Export Citation Format

Share Document