scholarly journals Blockchain-Secured Recommender System for Special Need Patients Using Deep Learning

2021 ◽  
Vol 9 ◽  
Author(s):  
Eric Appiah Mantey ◽  
Conghua Zhou ◽  
Joseph Henry Anajemba ◽  
Izuchukwu M. Okpalaoguchi ◽  
Onyeachonam Dominic-Mario Chiadika

Recommender systems offer several advantages to hospital data management units and patients with special needs. These systems are more dependent on the extreme subtle hospital-patient data. Thus, disregarding the confidentiality of patients with special needs is not an option. In recent times, several proposed techniques failed to cryptographically guarantee the data privacy of the patients with special needs in the diet recommender systems (RSs) deployment. In order to tackle this pitfall, this paper incorporates a blockchain privacy system (BPS) into deep learning for a diet recommendation system for patients with special needs. Our proposed technique allows patients to get notifications about recommended treatments and medications based on their personalized data without revealing their confidential information. Additionally, the paper implemented machine and deep learning algorithms such as RNN, Logistic Regression, MLP, etc., on an Internet of Medical Things (IoMT) dataset acquired via the internet and hospitals that comprises the data of 50 patients with 13 features of various diseases and 1,000 products. The product section has a set of eight features. The IoMT data features were analyzed with BPS and further encoded prior to the application of deep and machine learning-based frameworks. The performance of the different machine and deep learning methods were carried out and the results verify that the long short-term memory (LSTM) technique is more effective than other schemes regarding prediction accuracy, precision, F1-measures, and recall in a secured blockchain privacy system. Results showed that 97.74% accuracy utilizing the LSTM deep learning model was attained. The precision of 98%, recall, and F1-measure of 99% each for the allowed class was also attained. For the disallowed class, the scores were 89, 73, and 80% for precision, recall, and F1-measure, respectively. The performance of our proposed BPS is subdivided into two categories: the secured communication channel of the recommendation system and an enhanced deep learning approach using health base medical dataset that spontaneously identifies what food a patient with special needs should have based on their disease and certain features including gender, weight, age, etc. The proposed system is outstanding as none of the earlier revised works of literature described a recommender system of this kind.

2020 ◽  
Vol 5 (2) ◽  
pp. 96-116
Author(s):  
subhashini narayan ◽  

In this modern world of ever-increasing one-click purchases, movie bookings, music, healthcare, fashion, the need for recommendations have increased the more. Google, Netflix, Spotify, Amazon and other tech giants use recommendations to customize and tailor their search engines to suit the user’s interests. Many of the existing systems are based on older algorithms which although have decent accuracies, require large training and testing datasets and with the emergence of deep learning, the accuracy of algorithms has further improved, and error rates have reduced due to the use of multiple layers. The need for large datasets has declined as well. This research article propose a recommendation system based on deep learning models such as multilayer perceptron that would provide a slightly more efficient and accurate recommendations.


2021 ◽  
Author(s):  
Juan G. Diaz Ochoa ◽  
Orsolya Csiszár ◽  
Thomas Schimper

Abstract Background Out of the pressure of Digital Transformation, the major industrial domains are using advanced and efficient digital technologies to implement processes that are applied on a daily basis. Unfortunately, this still does not happen in the same way in the medical domain. For this reason, doctors usually do not have the time or knowledge to evaluate all alternative treatment options for an individual patient accurately and individually. However, physicians can reduce their workload by using Recommender Systems, still having every decision under control. In this way, they also get an insight into how other physicians make treatment decisions in each situation. In this work, we report the development of a novel recommender system that uses predicted outcomes based on continuous-valued logic and multi-criteria decision operators. The advantage of this methodology is that it is transparent, since the model outcomes emulate logical decision processes based on the hierarchy of relevant physiological parameters, and second, it is safer against adversarial attacks than conventional deep learning methods since it drastically reduces the number of trainable parameters.Methods We test our methodology in a patient population with diabetes and heart insufficiency that becomes a therapy (beta-blockers, ACE or Aspirin). The original database (Pakistan database) is publicly available and accessible via the internet. However, to explore methods to protect the patient`s identity and guarantee data privacy we implemented a methodology on a variable-by-variable basis by fitting a sequence of regression models and drawing synthetic values from the corresponding predictive distributions using linear regressions and norm rank.Furthermore, we implemented a deep-learning model based on logical gates modeled by perceptrons with fixed weights and biases. While a first trainable layer automatically recognizes a meaningful parameter hierarchy, the implemented Logic-Operator Neuronal Network (LONN) simulates cognitive processes like a rational, logical thinking process, considering that this logic is joined by fuzziness, i.e., logical operations are not exact but essentially fuzzy due to the implemented continuous-valued operators.The predicted outcomes of the model (kind of therapy -ACE, Aspirin or beta-blocker- and expected therapy time of the patient) are then implemented in a recommender system that compares two different models: model 1 trained on a population excluding negative outcomes (patient group 1, with no patient dead and long therapy times) and a model 2 trained on the whole patient population (patient group 2). In this way, we provide a recommendation of the best possible therapy based on the outcome of model 1and the confidence of this recommendation when the outcome of model 1 is compared with the outcome of model 2. Results With the applied method for data synthetization, we obtained an error of about 1% for all the relevant parameters. Furthermore, we demonstrate that the LONN models reach an accuracy of about 75%. After comparing the LONN models against conventional deep-learning models we observe that our implemented models are less accurate (accuracy loss of about 8%). However, the loss of accuracy is compensated by the fact that LONN models are transparent and safe because the freezing of training parameters makes them less prone to adversarial attacks. Finally, we predict the best therapy as well as the expected therapy time. We were able to predict individualized therapies, which were classified as optimal (binary value) when the prediction fully matched predictions made with models 1 and 2. The results provided by the recommender system are displayed using a graphical interface. The current is a proof of concept to improve the quality of the disease management, while the methods are continuously visualized to preserve transparency for the customers. Conclusions This work contributes to boost administrative functions and quality of management of patients and improve the quality of healthcare with models that are both transparent and safe. Our methodology can be extended to different clinical scenarios where recommender systems can be applied. The acceptance and further development of the app is one of the next important steps and still requires further development depending on specific requirements of the health management, the physicians or health professionals, and the patent population.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Juan G. Diaz Ochoa ◽  
Orsolya Csiszár ◽  
Thomas Schimper

Abstract Background Out of the pressure of Digital Transformation, the major industrial domains are using advanced and efficient digital technologies to implement processes that are applied on a daily basis. Unfortunately, this still does not happen in the same way in the medical domain. For this reason, doctors usually do not have the time or knowledge to evaluate all alternative treatment options for each patient accurately and individually. However, physicians can reduce their workload by using recommender systems, still having every decision under control. In this way, they also get an insight into how other physicians make treatment decisions in each situation. In this work, we report the development of a novel recommender system that uses predicted outcomes based on continuous-valued logic and multi-criteria decision operators. The advantage of this methodology is that it is transparent, since the model outcomes emulate logical decision processes based on the hierarchy of relevant physiological parameters, and second, it is safer against adversarial attacks than conventional deep learning methods since it drastically reduces the number of trainable parameters. Methods We test our methodology in a patient population with diabetes and heart insufficiency that becomes a therapy (beta-blockers, ACE or Aspirin). The original database (Pakistan database) is publicly available and accessible via the internet. However, to explore methods to protect the patient's identity and guarantee data privacy we implemented a methodology on a variable-by-variable basis by fitting a sequence of regression models and drawing synthetic values from the corresponding predictive distributions using linear regressions and norm rank. Furthermore, we implemented a deep-learning model based on logical gates modeled by perceptrons with fixed weights and biases. While a first trainable layer automatically recognizes a meaningful parameter hierarchy, the implemented Logic-Operator Neuronal Network (LONN) simulates cognitive processes like a rational, logical thinking process, considering that this logic is joined by fuzziness, i.e., logical operations are not exact but essentially fuzzy due to the implemented continuous-valued operators. The predicted outcomes of the model (kind of therapy-ACE, Aspirin or beta-blocker- and expected therapy time of the patient) are then implemented in a recommender system that compares two different models: model 1 trained on a population excluding negative outcomes (patient group 1, with no patient dead and long therapy times) and a model 2 trained on the whole patient population (patient group 2). In this way, we provide a recommendation of the best possible therapy based on the outcome of the model and the confidence of this recommendation when the outcome of model 1 is compared with the outcome of model 2. Results With the applied method for data synthetization, we obtained an error of about 1% for all the relevant parameters. Furthermore, we demonstrate that the LONN models reach an accuracy of about 75%. After comparing the LONN models against conventional deep-learning models we observe that our implemented models are less accurate (accuracy loss of about 8%). However, the loss of accuracy is compensated by the fact that LONN models are transparent and safe because the freezing of training parameters makes them less prone to adversarial attacks. Finally, we predict the best therapy as well as the expected therapy time. We were able to predict individualized therapies, which were classified as optimal (binary value) when the prediction fully matched predictions made with models 1 and 2. The results provided by the recommender system are displayed using a graphical interface. The current is a proof of concept to improve the quality of the disease management, while the methods are continuously visualized to preserve transparency for the customers. Conclusions This work contributes to simplify administrative functions and boost the quality of management of patients improving the quality of healthcare with models that are both transparent and safe. Our methodology can be extended to different clinical scenarios where recommender systems can be applied. The acceptance and further development of the app is one of the next important steps and still requires further development depending on specific requirements of the health management, the physicians or health professionals, and the patent population.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 924
Author(s):  
Moslem Imani ◽  
Hoda Fakour ◽  
Wen-Hau Lan ◽  
Huan-Chin Kao ◽  
Chi Ming Lee ◽  
...  

Despite the great significance of precisely forecasting the wind speed for development of the new and clean energy technology and stable grid operators, the stochasticity of wind speed makes the prediction a complex and challenging task. For improving the security and economic performance of power grids, accurate short-term wind power forecasting is crucial. In this paper, a deep learning model (Long Short-term Memory (LSTM)) has been proposed for wind speed prediction. Knowing that wind speed time series is nonlinear stochastic, the mutual information (MI) approach was used to find the best subset from the data by maximizing the joint MI between subset and target output. To enhance the accuracy and reduce input characteristics and data uncertainties, rough set and interval type-2 fuzzy set theory are combined in the proposed deep learning model. Wind speed data from an international airport station in the southern coast of Iran Bandar-Abbas City was used as the original input dataset for the optimized deep learning model. Based on the statistical results, the rough set LSTM (RST-LSTM) model showed better prediction accuracy than fuzzy and original LSTM, as well as traditional neural networks, with the lowest error for training and testing datasets in different time horizons. The suggested model can support the optimization of the control approach and the smooth procedure of power system. The results confirm the superior capabilities of deep learning techniques for wind speed forecasting, which could also inspire new applications in meteorology assessment.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Jun Meng ◽  
Qiang Kang ◽  
Zheng Chang ◽  
Yushi Luan

Abstract Background Long noncoding RNAs (lncRNAs) play an important role in regulating biological activities and their prediction is significant for exploring biological processes. Long short-term memory (LSTM) and convolutional neural network (CNN) can automatically extract and learn the abstract information from the encoded RNA sequences to avoid complex feature engineering. An ensemble model learns the information from multiple perspectives and shows better performance than a single model. It is feasible and interesting that the RNA sequence is considered as sentence and image to train LSTM and CNN respectively, and then the trained models are hybridized to predict lncRNAs. Up to present, there are various predictors for lncRNAs, but few of them are proposed for plant. A reliable and powerful predictor for plant lncRNAs is necessary. Results To boost the performance of predicting lncRNAs, this paper proposes a hybrid deep learning model based on two encoding styles (PlncRNA-HDeep), which does not require prior knowledge and only uses RNA sequences to train the models for predicting plant lncRNAs. It not only learns the diversified information from RNA sequences encoded by p-nucleotide and one-hot encodings, but also takes advantages of lncRNA-LSTM proposed in our previous study and CNN. The parameters are adjusted and three hybrid strategies are tested to maximize its performance. Experiment results show that PlncRNA-HDeep is more effective than lncRNA-LSTM and CNN and obtains 97.9% sensitivity, 95.1% precision, 96.5% accuracy and 96.5% F1 score on Zea mays dataset which are better than those of several shallow machine learning methods (support vector machine, random forest, k-nearest neighbor, decision tree, naive Bayes and logistic regression) and some existing tools (CNCI, PLEK, CPC2, LncADeep and lncRNAnet). Conclusions PlncRNA-HDeep is feasible and obtains the credible predictive results. It may also provide valuable references for other related research.


Author(s):  
Saeed Vasebi ◽  
Yeganeh M. Hayeri ◽  
Peter J. Jin

Relatively recent increased computational power and extensive traffic data availability have provided a unique opportunity to re-investigate drivers’ car-following (CF) behavior. Classic CF models assume drivers’ behavior is only influenced by their preceding vehicle. Recent studies have indicated that considering surrounding vehicles’ information (e.g., multiple preceding vehicles) could affect CF models’ performance. An in-depth investigation of surrounding vehicles’ contribution to CF modeling performance has not been reported in the literature. This study uses a deep-learning model with long short-term memory (LSTM) to investigate to what extent considering surrounding vehicles could improve CF models’ performance. This investigation helps to select the right inputs for traffic flow modeling. Five CF models are compared in this study (i.e., classic, multi-anticipative, adjacent-lanes, following-vehicle, and all-surrounding-vehicles CF models). Performance of the CF models is compared in relation to accuracy, stability, and smoothness of traffic flow. The CF models are trained, validated, and tested by a large publicly available dataset. The average mean square errors (MSEs) for the classic, multi-anticipative, adjacent-lanes, following-vehicle, and all-surrounding-vehicles CF models are 1.58 × 10−3, 1.54 × 10−3, 1.56 × 10−3, 1.61 × 10−3, and 1.73 × 10−3, respectively. However, the results show insignificant performance differences between the classic CF model and multi-anticipative model or adjacent-lanes model in relation to accuracy, stability, or smoothness. The following-vehicle CF model shows similar performance to the multi-anticipative model. The all-surrounding-vehicles CF model has underperformed all the other models.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1633
Author(s):  
Chreston Miller ◽  
Leah Hamilton ◽  
Jacob Lahne

This paper is concerned with extracting relevant terms from a text corpus on whisk(e)y. “Relevant” terms are usually contextually defined in their domain of use. Arguably, every domain has a specialized vocabulary used for describing things. For example, the field of Sensory Science, a sub-field of Food Science, investigates human responses to food products and differentiates “descriptive” terms for flavors from “ordinary”, non-descriptive language. Within the field, descriptors are generated through Descriptive Analysis, a method wherein a human panel of experts tastes multiple food products and defines descriptors. This process is both time-consuming and expensive. However, one could leverage existing data to identify and build a flavor language automatically. For example, there are thousands of professional and semi-professional reviews of whisk(e)y published on the internet, providing abundant descriptors interspersed with non-descriptive language. The aim, then, is to be able to automatically identify descriptive terms in unstructured reviews for later use in product flavor characterization. We created two systems to perform this task. The first is an interactive visual tool that can be used to tag examples of descriptive terms from thousands of whisky reviews. This creates a training dataset that we use to perform transfer learning using GloVe word embeddings and a Long Short-Term Memory deep learning model architecture. The result is a model that can accurately identify descriptors within a corpus of whisky review texts with a train/test accuracy of 99% and precision, recall, and F1-scores of 0.99. We tested for overfitting by comparing the training and validation loss for divergence. Our results show that the language structure for descriptive terms can be programmatically learned.


2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


Sign in / Sign up

Export Citation Format

Share Document