scholarly journals Practical Design Considerations for Performance and Robustness in the Face of Uncertain Flexible Dynamics in Space Manipulators

2021 ◽  
Vol 8 ◽  
Author(s):  
Connor Holmes

Low frequency dynamics introduced by structural flexibility can result in considerable performance degradation and even instability in on-orbit, robotic manipulators. Although there is a wealth of literature that addresses this problem, the author has found that many advanced solutions are often precluded by practical considerations. On the other hand, classical, robust control methods are tractable for these systems if the design problem is properly constrained. This paper investigates a pragmatic engineering approach that evaluates the system’s stability margins in the face of uncertain, flexible perturbation dynamics with frequencies that lie close to or within the bandwidth of the nominal closed-loop system. The robustness of classical control strategies is studied in the context of both collocated (joint rate) and non-collocated (force/torque and vision-based) feedback. It is shown that robust stability and performance depend on the open-loop control bandwidth of the nominal control law (as designed for a simplified, rigid plant). Namely, the designed bandwidth must be constrained to be lower than the minimum flexible mode frequency of the unmodeled dynamics by a given factor. This strategy gives credence to popular heuristic methods commonly used to reduce the effect of unmodeled dynamics in complex manipulator systems.

1997 ◽  
Vol 119 (2) ◽  
pp. 243-250 ◽  
Author(s):  
C. R. Knospe ◽  
S. M. Tamer ◽  
S. J. Fedigan

Recent experimental results have demonstrated the effectiveness of adaptive open-loop control algorithms for the suppression of unbalance response on rotors supported in active magnetic hearings. Herein, tools for the analysis of stability and performance robustness of this algorithm with respect to structured uncertainty are derived. The stability and performance robustness analysis problems are shown to be readily solved using a novel application of structured singular values. An example problem is presented which demonstrate the efficacy of this approach in obtaining tight bounds on stability margin and worst case performance.


Author(s):  
M. Ramkumar ◽  
K. N. Srinivas

<p>This paper proposes modelling, analysis and control of a small scale wind energy conversion system employing a direct driven Flux Reversal Generator (FRG) connected to the micro grid through a quasi-Z-source inverter (QZSI). This entire research is made up of two major parts viz., FRG and QZSI. In the part I report of this research work, the role of FRG has been thoroughly modelled and verified. In this part II, the modelling and analysis of QZSI for this purpose is presented. In addition, the modified space vector PWM (SVPWM) technique is proposed in this paper to satisfy the shoot-through characteristic of QZSI, which is a novel. The interface of FRG and QZSI to inject power in to micro grid has been finally presented. The simulation results are validated with the analytical results. Section I discusses the open loop control of QZSI. The mathematical modelling of QZSI for this purpose is given and analytically validated. This flowed by section II in which the proposed SVPWM is presented. The procedure to obtain triggering pulses using this proposed modulation technique is discussed. Section III presents closed loop control strategies for QZSI. Section IV presents the micro grid<br />inte face and power injection.</p>


1986 ◽  
Vol 53 (1) ◽  
pp. 23-27 ◽  
Author(s):  
S. B. Skaar ◽  
D. Tucker

An alternative approach to the control of nonrigid, distributed parameter systems is presented. Transfer functions that relate the response of points on the system to a controlling force or torque are used in place of ordinary differential equations, which represent an approximation to the system dynamics. The implications of this “point control” approach are discussed with regard to plant modeling accuracy, uncontrolled regions, open-loop and closed-loop control strategies, system identification, and feedback estimation. Sample optimal control histories are illustrated for a single-link manipulator member with end load.


Author(s):  
M O Tokhi ◽  
A K M Azad

This paper presents an investigation into the development of open-loop and closed-loop control strategies for flexible manipulator systems. Shaped torque inputs, including Gaussian-shaped and low-pass (Butter-worth and elliptic) filtered input torque functions, are developed and used in an open-loop configuration and their performance studied in comparison to a bang-bang input torque through experimentation on a single-link flexible manipulator system. Closed-loop control strategies that use both collocated (hub angle and hub velocity) and non-collocated (end-point acceleration) feedback are then proposed. A collocated proportional and derivative (PD) control is first developed and its performance studied through experimentation. The collocated control is then extended to incorporate, additionally, non-collocated feedback through a proportional integral derivative (PID) configuration. The performance of the hybrid collocated and non-collocated control strategy thus developed is studied through experimentation. Experimental results verifying the performance of the developed control strategies are presented and discussed.


1995 ◽  
Vol 05 (04) ◽  
pp. 747-755 ◽  
Author(s):  
MARIAN K. KAZIMIERCZUK ◽  
ROBERT C. CRAVENS, II

An experimental verification of previously derived small-signal low-frequency open- and closed-loop characteristics and step responses of a voltage-mode-controlled pulse-width-modulated (PWM) boost DC–DC converter is presented. The Bode plots of the voltage transfer function of the control circuit, the converter and the PWM modulator, the open-loop control-to-output and input-to-output transfer functions, the loop gain, and the closed-loop control-to-output and input-to-output transfer functions are measured. The step responses to the changes in the input voltage, the duty cycle, and the reference voltage are measured. The theoretical results were in good agreement with the measured results. The small-signal model of the converter is experimentally verified.


2011 ◽  
Vol 2 (1) ◽  
pp. 9-15 ◽  
Author(s):  
C. Meijneke ◽  
G. A. Kragten ◽  
M. Wisse

Abstract. The Delft Hand 2 (DH-2) is an underactuated robot hand meant for industrial applications, having six degrees of freedom (DoF), one actuator (DoA) and no sensors. It was designed to provide a cheap and robust hand to grasp a large range of objects without damaging them. The goal of this paper is to assess the design and performance of the DH-2, demonstrating how the design was optimized for its intended application area and how the hand was simplified to make it commercially attractive. Performance tests show that the DH-2 has a payload of 2 kg for an object range of 60 to 120 mm, it can close or open within 0.5 s, and it only uses open-loop control by means of the input voltage of the motor. The results demonstrate that the industrial need of a simple, cheap and effective robotic hand can be achieved with the principle of underactuation and the use of conventional components. This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010), 19 August 2010, Montréal, Canada.


Author(s):  
Dean H. Kim

This paper presents a method that the author has developed to teach students about the need for feedback control and to facilitate the understanding of controller implementation. The initial discussion focuses on the limitations of open-loop control to improve performance of the traditional mass-spring-damper system. The key contribution is the introduction of an enhanced mass-spring-damper system with a position sensor and force generator, resulting in voltages as system input and output. This enhanced system provides a foundation for discussion of basic feedback control strategies such as PID-Control in addition to advanced controls concepts. The analysis is provided in time-domain to facilitate the understanding of these important controls concepts.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2663
Author(s):  
Isaías V. de Bessa ◽  
Renan L. P. de Medeiros ◽  
Iury Bessa ◽  
Florindo A. C. Ayres Junior ◽  
Alessandra R. de Menezes ◽  
...  

The DC microgrid system is composed by converters that operate like feeders and loads. Among these loads, we highlight the constant power loads (CPLs) that may cause instability in the microgrid, observed in the form of undesired oscillations due to its negative impedance behavior. Therefore, this work proposes to use performance indices and stability margins to evaluate state and output feedback control strategies for stabilization of DC microgrids. In particular, it is proposed to evaluate the stability margin of the proposed methodologies by means of the impedance relations in the microgrid based on the Middlebrook criterion. Our simulations and tests showed the relation between the performance and stability degradation and the microgrid impedances variation.


Author(s):  
Jong Ho Uhm ◽  
Sumanta Acharya

A new strategy for open-loop control of combustion oscillations using a high-momentum air-jet modulated at low frequencies is presented in this paper. The oscillations in the swirl-stabilized spray combustor of interest are dominated by an acoustic mode (235 Hz) with a low frequency (13 Hz) bulkmode (of the upstream cavity) oscillation superimposed. The most effective strategy for control is shown to be achieved through the use of a new concept which utilizes a high-momentum air-jet injected directly into the region of flame dynamics. It is shown that with a low frequency modulation (15 Hz) of the high momentum air-jet, the pressure oscillations can be reduced significantly (by a factor of nearly 10). Square wave modulation is shown to be considerably more effective than sine-wave modulation. These results are extremely promising since high bandwidth actuation is not required for effective control.


Sign in / Sign up

Export Citation Format

Share Document