scholarly journals Raw EPIC Data Calibration

2021 ◽  
Vol 2 ◽  
Author(s):  
Alexander Cede ◽  
Liang Kang Huang ◽  
Gavin McCauley ◽  
Jay Herman ◽  
Karin Blank ◽  
...  

Earth Polychromatic Imaging Camera (EPIC) raw level-0 (L0) data in one channel is a 12-bit 2,048 × 2,048 pixels image array plus auxiliary data such as telemetry, temperature, etc. The EPIC L1a processor applies a series of correction steps on the L0 data to convert them into corrected count rates (level-1a or L1a data): Dark correction, Enhanced pixel detection, Read wave correction, Latency correction, Non-linearity correction, Temperature correction, Conversion to count rates, Flat fielding, and Stray light correction. L1a images should have all instrumental effects removed and only need to be multiplied by one single number for each wavelength to convert counts to radiances, which are the basis for all higher-level EPIC products, such as ozone and sulfur dioxide total column amounts, vegetation index, cloud, aerosol, ocean surface, and vegetation properties, etc. This paper gives an overview of the mathematics and the pre-launch and on-orbit calibration behind each correction step.

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaosong Zhao ◽  
Yuanbo Liu

Evapotranspiration (ET) is an important component of the water budget. Estimation ET through remote sensing over a mountainous terrain is typically obstructed by topographic effects. In this paper, topographic corrections were applied to ET estimates using the surface-air temperature difference-Normalized Difference Vegetation Index ((Ts-Ta)-NDVI) triangle method with MODIS data for the Taihu Basin in China. The effect of topography on ET was evaluated over an area with a complex terrain. After applying the topographic correction, the results indicate that the ET decreased with elevation and slope. The slope had a stronger impact on ET than the elevation, which caused the corrected ET to decrease by 90% from 6.8 mm day−1to 0.6 mm day−1for slopes over 50°. On average, the corrected ET decreased by 10.4% and 32.1% for north- and south-facing slopes, respectively. The ET corrected using the triangle method strongly depended on the evaporative fraction correction, which can mainly be attributed to the surface temperature correction. We conclude that a topographic correction is necessary when the triangle method is applied to areas with a complex terrain.


2015 ◽  
Vol 32 (8) ◽  
pp. 1464-1477 ◽  
Author(s):  
Andrew R. D. Smedley ◽  
Richard C. Kift ◽  
Ann R. Webb

AbstractThis study describes a dual-channel array spectrometer system designed to make high-frequency simultaneous spectral global irradiance and direct solar irradiance measurements covering the visible and ultraviolet wavelength ranges. The dual-channel nature of the instrument allows spectrally integrated quantities (e.g., erythema or vitamin D) to be calculated at a rate similar to broadband instruments while retrieving total column ozone (TCO) from the direct solar channel. The characterization and calibration of the instrument is discussed, with emphasis on temperature stabilization (<±0.01°C) and stray light removal. Focusing on the TCO retrieval from direct spectra, results are compared to a collocated Brewer spectrophotometer during the study period of May 2013–January 2014. Agreement for individual measurements made within 20 min of a reference Brewer direct sun observation on relatively clear example days is <1.5%. For all valid individual measurements, the study found an overall bias of 1.1 Dobson units (DU; 0.4%) and scatter of ±6.7 DU (2.2%) for retrievals obtained at airmass values < 4. A dependence on air mass of 6.3 DU (2.0%) per airmass unit is observed and a correlation of R2 = 0.954 is found for all individual measurements, although this is reduced to 0.908 for daily means. TCO retrievals are limited to airmass values < 4 primarily because of residual structure in the transmission spectrum that cannot be attributed to other trace gases. These results are encouraging and suggest that similar instrument designs could make a significant and relatively low-cost contribution to surface measurements of atmospheric radiation.


2018 ◽  
Vol 18 (13) ◽  
pp. 9441-9455 ◽  
Author(s):  
Alberto Redondas ◽  
Virgilio Carreño ◽  
Sergio F. León-Luis ◽  
Bentorey Hernández-Cruz ◽  
Javier López-Solano ◽  
...  

Abstract. From 25 May to 5 June 2015, the 10th regional intercomparison campaign of the Regional Brewer Calibration Center – Europe (RBCC-E) was held at El Arenosillo atmospheric sounding station of the Instituto Nacional de Técnica Aeroespacial (INTA). This campaign was jointly conducted by COST Action ES1207 EUBREWNET and the Area of Instrumentation and Atmospheric Research of INTA. A total of 21 Brewers, 11 single- and 10 double-monochromator instruments from 11 countries participated and were calibrated for total column ozone (TOC) and solar UV irradiance. In this 2015 campaign we have introduced a formal approach to the characterisation of the internal instrumental stray light, the filter non-linearity and the algorithm for correcting for its effects on the TOC calculations. This work shows a general overview of the ozone comparison and the evaluation of the correction of the spectral stray light effect for the single-monochromator Brewer spectrophotometer, derived from the comparison with a reference double-monochromator Brewer instrument. At the beginning of the campaign, 16 out of the 21 participating Brewer instruments agreed within better than ±1 %, and 10 instruments agreed within better than ±0.5 % considering data with ozone slant column between 100 and 900 DU, which does not require instrumental stray light correction.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1130 ◽  
Author(s):  
Xing Zhong ◽  
Zhiqiang Su ◽  
Guo Zhang ◽  
Zhigang Chen ◽  
Yao Meng ◽  
...  

As one of the experimental payloads on Luojia-1 satellite, the nighttime imaging camera works with a high sensitivity to acquire nighttime light on earth. Solar stray light is a fatal problem for optical satellite works in the polar orbit, even for nighttime scene imaging, resulting in image saturation and light signal detection failure. To solve this problem, an analysis of the range of solar incident angles was conducted firstly. Based on the result, a special-shaped baffle was designed to avoid direct sunlight incidence. Moreover, the capability of stray light elimination of the lens was enhanced by an order of magnitude via optimizing the internal structure. An evaluation of secondary scattering stray lights into the camera from surrounding parts was performed based on a real satellite model. The results showed that the stray light elimination reaches a 10−10 order, meeting design requirements. Utilizing on-orbit images, the ability of satellites in illuminated areas to obtain artificial lights in dawn-dusk area was verified, proving the effectiveness of the stray light elimination design.


2021 ◽  
Author(s):  
Johannes Gensheimer ◽  
Alexander Jay Turner ◽  
Philipp Köhler ◽  
Christian Frankenberg ◽  
Jia Chen

Abstract. Gross primary productivity (GPP) is the sum of leaf photosynthesis and represents a crucial component of the global carbon cycle. Space-borne estimates of GPP typically rely on observable quantities that co-vary with GPP such as vegetation indices using reflectance measurements (e.g., NDVI, NIRv, and kNDVI). Recent work has also utilized measurements of solar-induced chlorophyll fluorescence (SIF) as a proxy for GPP. However, these SIF measurements are typically coarse resolution while many processes influencing GPP occur at fine spatial scales. Here, we develop a Convolutional Neural Network (CNN), named SIFnet, that increases the resolution of SIF from the TROPOspheric Monitoring Instrument (TROPOMI) on board of the satellite Sentinel-5P by a factor of 10 to a spatial resolution of 500 m. SIFnet utilizes coarse SIF observations together with high resolution auxiliary data. The auxiliary data used here may carry information related to GPP and SIF. We use training data from non-US regions between April 2018 until March 2021 and evaluate our CNN over the conterminous United States (CONUS). We show that SIFnet is able to increase the resolution of TROPOMI SIF by a factor of 10 with a r2 and RMSE metrics of 0.92 and 0.17 mW m−2 sr−1 nm−1, respectively. We further compare SIFnet against a recently developed downscaling approach and evaluate both methods against independent SIF measurements from Orbiting Carbon Observatory 2 and 3 (OCO-2/3). SIFnet performs systematically better than the downscaling approach (r = 0.78 for SIFnet, r = 0.72 for downscaling), indicating that it is picking up on key features related to SIF and GPP. Examination of the feature importance in the neural network indicates a few key parameters and the spatial regions these parameters matter. Namely, the CNN finds low resolution SIF data to be the most significant parameter with the NIRv vegetation index as the second most important parameter. NIRv consistently outperforms the recently proposed kNDVI vegetation index. Advantages and limitations of SIFnet are investigated and presented through a series of case studies across the United States. SIFnet represents a robust method to infer continuous, high spatial resolution SIF data.


2020 ◽  
Vol 12 (18) ◽  
pp. 2919
Author(s):  
Ann-Kathrin Holtgrave ◽  
Norbert Röder ◽  
Andrea Ackermann ◽  
Stefan Erasmi ◽  
Birgit Kleinschmit

Agricultural vegetation development and harvest date monitoring over large areas requires frequent remote sensing observations. In regions with persistent cloud coverage during the vegetation season this is only feasible with active systems, such as SAR, and is limited for optical data. To date, optical remote sensing vegetation indices are more frequently used to monitor agricultural vegetation status because they are easily processed, and the characteristics are widely known. This study evaluated the correlations of three Sentinel-2 optical indices with Sentinel-1 SAR indices over agricultural areas to gain knowledge about their relationship. We compared Sentinel-2 Normalized Difference Vegetation Index, Normalized Difference Water Index, and Plant Senescence Radiation Index with Sentinel-1 SAR VV and VH backscatter, VH/VV ratio, and Sentinel-1 Radar Vegetation Index. The study was conducted on 22 test sites covering approximately 35,000 ha of four different main European agricultural land use types, namely grassland, maize, spring barley, and winter wheat, in Lower Saxony, Germany, in 2018. We investigated the relationship between Sentinel-1 and Sentinel-2 indices for each land use type considering three phenophases (growing, green, senescence). The strength of the correlations of optical and SAR indices differed among land use type and phenophase. There was no generic correlation between optical and SAR indices in our study. However, when the data were split by land use types and phenophases, the correlations increased remarkably. Overall, the highest correlations were found for the Radar Vegetation Index and VH backscatter. Correlations for grassland were lower than for the other land use types. Adding auxiliary data to a multiple linear regression analysis revealed that, in addition to land use type and phenophase information, the lower quartile and median SAR values per field, and a spatial variable, improved the models. Other auxiliary data retrieved from a digital elevation model, Sentinel-1 orbit direction, soil type information, and other SAR values had minor impacts on the model performance. In conclusion, despite the different nature of the signal generation, there were distinct relationships between optical and SAR indices which were independent of environmental variables but could be stratified by land use type and phenophase. These relationships showed similar patterns across different test sites. However, a regional clustering of landscapes would significantly improve the relationships.


2016 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Vitali Fioletov ◽  
Kimberly Strong ◽  
Alexander Cede ◽  
Jonathan Davies

Abstract. This study evaluates the performance of the recently developed Pandora spectrometer by comparing it with the Brewer reference triad. This triad was established by Environment and Climate Change Canada (ECCC) in the 1980s and is used to calibrate Brewer instruments around the world, ensuring high quality total column ozone (TCO) measurements. To reduce stray light, the double Brewer instrument was introduced in 1992, and a new reference triad of double Brewers is also operational at Toronto. Since 2013, ECCC has deployed two Pandora spectrometers co-located with the old and new Brewer triads, making it possible to study the performance of three generations of ozone-monitoring instruments. The statistical analysis of TCO records from these instruments indicates that the random uncertainty for the Brewer is below 0.6 %, while that for the Pandora is below 0.4 %. However, there is a 1 % seasonal difference and a 3 % bias between the standard Pandora and Brewer TCO data, which is related to the temperature dependence and difference in ozone cross sections. A statistical model was developed to remove this seasonal difference and bias. It was based on daily temperature profiles from the European Centre for Medium-Range Weather Forecasts Interim data over Toronto and TCO from the Brewer reference triads. When the statistical model was used to correct Pandora data, the seasonal difference was reduced to 0.25 % and the bias was reduced to 0.04 %. Pandora instruments were also found to have low airmass dependence up to 81.6° solar zenith angle, comparable to double Brewer instruments.


2016 ◽  
Vol 9 (12) ◽  
pp. 5747-5761 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Vitali Fioletov ◽  
Alexander Cede ◽  
Jonathan Davies ◽  
Kimberly Strong

Abstract. This study evaluates the performance of the recently developed Pandora spectrometer by comparing it with the Brewer reference triad. This triad was established by Environment and Climate Change Canada (ECCC) in the 1980s and is used to calibrate Brewer instruments around the world, ensuring high-quality total column ozone (TCO) measurements. To reduce stray light, the double Brewer instrument was introduced in 1992, and a new reference triad of double Brewers is also operational at Toronto. Since 2013, ECCC has deployed two Pandora spectrometers co-located with the old and new Brewer triads, making it possible to study the performance of three generations of ozone-monitoring instruments. The statistical analysis of TCO records from these instruments indicates that the random uncertainty for the Brewer is below 0.6 %, while that for the Pandora is below 0.4 %. However, there is a 1 % seasonal difference and a 3 % bias between the standard Pandora and Brewer TCO data, which is related to the temperature dependence and difference in ozone cross sections. A statistical model was developed to remove this seasonal difference and bias. It was based on daily temperature profiles from the European Centre for Medium-Range Weather Forecasts ERA-Interim data over Toronto and TCO from the Brewer reference triads. When the statistical model was used to correct Pandora data, the seasonal difference was reduced to 0.25 % and the bias was reduced to 0.04 %. Pandora instruments were also found to have low air mass dependence up to 81.6° solar zenith angle, comparable to double Brewer instruments.


2017 ◽  
Vol 10 (10) ◽  
pp. 3661-3676 ◽  
Author(s):  
Jiyoung Kim ◽  
Jhoon Kim ◽  
Hi-Ku Cho ◽  
Jay Herman ◽  
Sang Seo Park ◽  
...  

Abstract. Daily total column ozone (TCO) measured using the Pandora spectrophotometer (no. 19) was compared with data from the Dobson (no. 124) and Brewer (no. 148) spectrophotometers, as well as from the Ozone Monitoring Instrument (OMI) (with two different algorithms, Total Ozone Mapping Spectrometer (TOMS) TOMS and differential optical absorption spectroscopy (DOAS) methods), over the 2-year period between March 2012 and March 2014 at Yonsei University, Seoul, Korea. Based on the linear-regression method, the TCO from Pandora is closely correlated with those from other instruments with regression coefficients (slopes) of 0.95 (Dobson), 1.00 (Brewer), 0.98 (OMI-TOMS), and 0.97 (OMI-DOAS), and determination coefficients (R2) of 0.95 (Dobson), 0.97 (Brewer), 0.96 (OMI-TOMS), and 0.95 (OMI-DOAS). The daily averaged TCO from Pandora has within 3 % differences compared to TCO values from other instruments. For the Dobson measurements in particular, the difference caused by the inconsistency in observation times when compared with the Pandora measurements was up to 12.5 % because of diurnal variations in the TCO values. However, the comparison with Brewer after matching the observation time shows agreement with large R2 and small biases. The TCO ratio between Brewer and Pandora shows the 0.98 ± 0.03, and the distributions for relative differences between two instruments are 89.2 and 57.1 % of the total data within the error ranges of 3 and 5 %, respectively. The TCO ratio between Brewer and Pandora also is partially dependent on solar zenith angle. The error dependence by the observation geometry is essential to the further analysis focusing on the sensitivity of aerosol and the stray-light effect in the instruments.


2019 ◽  
Vol 629 ◽  
pp. A118
Author(s):  
S. Gunár ◽  
J. Jurčák ◽  
K. Ichimoto

Context. Models of entire prominences with their numerous fine structures distributed within the prominence magnetic field use approximate radiative transfer techniques to visualize the simulated prominences. However, to accurately compare synthetic images of prominences obtained in this way with observations and to precisely analyze the visibility of even the faintest prominence features, it is important to take into account the influence of instrumental properties on the synthetic spectra and images. Aims. In the present work, we investigate how synthetic Hα images of simulated prominences are impacted by the instrumental effects induced by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) onboard the Hinode satellite. Methods. To process the synthetic Hα images provided by 3D Whole-Prominence Fine Structure (WPFS) models into SOT-like synthetic Hα images, we take into account the effects of the integration over the theoretical narrow-band transmission profile of NFI Lyot filter, the influence of the stray-light and point spread function (PSF) of Hinode/SOT, and the observed noise level. This allows us to compare the visibility of the prominence fine structures in the SOT-like synthetic Hα images with the synthetic Hα line-center images used by the 3D models and with a pair of Hinode/SOT NFI observations of quiescent prominences. Results. The comparison between the SOT-like synthetic Hα images and the synthetic Hα line-center images shows that all large and small-scale features are very similar in both visualizations and that the same very faint prominence fine structures can be discerned in both. This demonstrates that the computationally efficient Hα line-center visualization technique can be reliably used for the purpose of visualization of complex 3D prominence models. In addition, the qualitative comparison between the SOT-like synthetic images and prominence observations shows that the 3D WPFS models can reproduce large-scale prominence features rather well. However, the distribution of the prominence fine structures is significantly more diffuse in the observations than in the models and the diffuse intensity areas surrounding the observed prominences are also not present in the synthetic images. We also found that the maximum intensities reached in the models are about twice as high as those present in the observations–an indication that the mass-loading assumed in the present 3D WPFS models might be too large.


Sign in / Sign up

Export Citation Format

Share Document