scholarly journals Atmospheric Correction of DSCOVR EPIC: Version 2 MAIAC Algorithm

2021 ◽  
Vol 2 ◽  
Author(s):  
A. Lyapustin ◽  
Y. Wang ◽  
S. Go ◽  
M. Choi ◽  
S. Korkin ◽  
...  

The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) provides multispectral images of the sunlit disk of Earth since 2015 from the L1 orbit, approximately 1.5 million km from Earth toward the Sun. The NASA’s Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been adapted for DSCOVR/EPIC data providing operational processing since 2018. Here, we describe the latest version 2 (v2) MAIAC EPIC algorithm over land that features improved aerosol retrieval with updated regional aerosol models and new atmospheric correction scheme based on the ancillary bidirectional reflectance distribution function (BRDF) model of the Earth from MAIAC MODIS. The global validation of MAIAC EPIC aerosol optical depth (AOD) with AERONET measurements shows a significant improvement over v1 and the mean bias error MBE = 0.046, RMSE = 0.159, and R = 0.77. Over 66.7% of EPIC AOD retrievals agree with the AERONET AOD to within ± (0.1 + 0.1AOD). We also analyze the role of surface anisotropy, particularly important for the backscattering view geometry of EPIC, on the result of atmospheric correction. The retrieved BRDF-based bidirectional reflectance factors (BRF) are found higher than the Lambertian reflectance by 8–15% at 443 nm and 1–2% at 780 nm for EPIC observations near the local noon. Due to higher uncertainties, the atmospheric correction at UV wavelengths of 340, 388 nm is currently performed using a Lambertian approximation.

2018 ◽  
Vol 11 (10) ◽  
pp. 5741-5765 ◽  
Author(s):  
Alexei Lyapustin ◽  
Yujie Wang ◽  
Sergey Korkin ◽  
Dong Huang

Abstract. This paper describes the latest version of the algorithm MAIAC used for processing the MODIS Collection 6 data record. Since initial publication in 2011–2012, MAIAC has changed considerably to adapt to global processing and improve cloud/snow detection, aerosol retrievals and atmospheric correction of MODIS data. The main changes include (1) transition from a 25 to 1 km scale for retrieval of the spectral regression coefficient (SRC) which helped to remove occasional blockiness at 25 km scale in the aerosol optical depth (AOD) and in the surface reflectance, (2) continuous improvements of cloud detection, (3) introduction of smoke and dust tests to discriminate absorbing fine- and coarse-mode aerosols, (4) adding over-water processing, (5) general optimization of the LUT-based radiative transfer for the global processing, and others. MAIAC provides an interdisciplinary suite of atmospheric and land products, including cloud mask (CM), column water vapor (CWV), AOD at 0.47 and 0.55 µm, aerosol type (background, smoke or dust) and fine-mode fraction over water; spectral bidirectional reflectance factors (BRF), parameters of Ross-thick Li-sparse (RTLS) bidirectional reflectance distribution function (BRDF) model and instantaneous albedo. For snow-covered surfaces, we provide subpixel snow fraction and snow grain size. All products come in standard HDF4 format at 1 km resolution, except for BRF, which is also provided at 500 m resolution on a sinusoidal grid adopted by the MODIS Land team. All products are provided on per-observation basis in daily files except for the BRDF/Albedo product, which is reported every 8 days. Because MAIAC uses a time series approach, BRDF/Albedo is naturally gap-filled over land where missing values are filled-in with results from the previous retrieval. While the BRDF model is reported for MODIS Land bands 1–7 and ocean band 8, BRF is reported for both land and ocean bands 1–12. This paper focuses on MAIAC cloud detection, aerosol retrievals and atmospheric correction and describes MCD19 data products and quality assurance (QA) flags.


2020 ◽  
Vol 3 ◽  
pp. 1-11
Author(s):  
Laura Hall ◽  
Urpi Pine ◽  
Tanya Shute

Abstract This paper will reflect on key findings from a Summer 2017 initiative entitled The Role of Culture and Land-Based Healing in Addressing and Ending Violence against Indigenous Women and Two-Spirited People. The Indigenist and decolonizing methodological approach of this work ensured that all research was grounded in experiential and reciprocal ways of learning. Two major findings guide the next phase of this research, complicating the premise that traditional economic activities are healing for Indigenous women and Two-Spirit people. First, the complexities of the mainstream labour force were raised numerous times. Traditional economies are pressured in ongoing ways through exploitative labour practices. Secondly, participants emphasized the importance of attending to the responsibility of nurturing, enriching, and sustaining the wellbeing of soil, water, and original seeds in the process of creating renewal gardens as a healing endeavour. In other words, we have an active role to play in healing the environment and not merely using the environment to heal ourselves. Gardening as research and embodied knowledge was stressed by extreme weather changes including hail in June, 2018, which meant that participants spent as much time talking about the healing of the earth and her systems as the healing of Indigenous women in a context of ongoing colonialism.


2020 ◽  
pp. 713-736
Author(s):  
Magdalena Łaptaś

Images of archangels and angels, which were painted on the walls, in the upper parts of the buildings and, on their structural elements, were very popular in Christian Nubian painting as attested by the discoveries from Church SWN.BV on the citadel in Old Dongola. These images, which derive from pre-Christian art, depict the eternal nature of the archangels and angels. Presenting this group of representations, the author traces the origins of these images to highlight the role of these spiritual beings as intermediaries between God and humankind. As such, they move freely between the Heavens and the Earth, so the air and cosmic space are their natural surroundings. Moreover, archangels govern the forces of nature, the planets, and the seven skies. Therefore, their sanctuaries were located on hill summits, in the upper chapels, on structural elements of ecclesiastical buildings, etc. The Nubian tradition is therefore part of a broader Mediterranean tradition, the roots of which should be sought in the Near East.


GSA Today ◽  
2003 ◽  
Vol 13 (3) ◽  
pp. 27
Author(s):  
W.G. Ernst ◽  
G. Heiken ◽  
Susan M. Landon ◽  
P. Patrick Leahy ◽  
Eldridge Moores
Keyword(s):  

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 281
Author(s):  
Stuart L. Joy ◽  
José L. Chávez

Eddy covariance (EC) systems are being used to measure sensible heat (H) and latent heat (LE) fluxes in order to determine crop water use or evapotranspiration (ET). The reliability of EC measurements depends on meeting certain meteorological assumptions; the most important of such are horizontal homogeneity, stationarity, and non-advective conditions. Over heterogeneous surfaces, the spatial context of the measurement must be known in order to properly interpret the magnitude of the heat flux measurement results. Over the past decades, there has been a proliferation of ‘heat flux source area’ (i.e., footprint) modeling studies, but only a few have explored the accuracy of the models over heterogeneous agricultural land. A composite ET estimate was created by using the estimated footprint weights for an EC system in the upwind corner of four fields and separate ET estimates from each of these fields. Three analytical footprint models were evaluated by comparing the composite ET to the measured ET. All three models performed consistently well, with an average mean bias error (MBE) of about −0.03 mm h−1 (−4.4%) and root mean square error (RMSE) of 0.09 mm h−1 (10.9%). The same three footprint models were then used to adjust the EC-measured ET to account for the fraction of the footprint that extended beyond the field of interest. The effectiveness of the footprint adjustment was determined by comparing the adjusted ET estimates with the lysimetric ET measurements from within the same field. This correction decreased the absolute hourly ET MBE by 8%, and the RMSE by 1%.


2021 ◽  
Vol 13 (15) ◽  
pp. 2996
Author(s):  
Qinwei Zhang ◽  
Mingqi Li ◽  
Maohua Wang ◽  
Arthur Paul Mizzi ◽  
Yongjian Huang ◽  
...  

High spatial resolution carbon dioxide (CO2) flux inversion systems are needed to support the global stocktake required by the Paris Agreement and to complement the bottom-up emission inventories. Based on the work of Zhang, a regional CO2 flux inversion system capable of assimilating the column-averaged dry air mole fractions of CO2 (XCO2) retrieved from Orbiting Carbon Observatory-2 (OCO-2) observations had been developed. To evaluate the system, under the constraints of the initial state and boundary conditions extracted from the CarbonTracker 2017 product (CT2017), the annual CO2 flux over the contiguous United States in 2016 was inverted (1.08 Pg C yr−1) and compared with the corresponding posterior CO2 fluxes extracted from OCO-2 model intercomparison project (OCO-2 MIP) (mean: 0.76 Pg C yr−1, standard deviation: 0.29 Pg C yr−1, 9 models in total) and CT2017 (1.19 Pg C yr−1). The uncertainty of the inverted CO2 flux was reduced by 14.71% compared to the prior flux. The annual mean XCO2 estimated by the inversion system was 403.67 ppm, which was 0.11 ppm smaller than the result (403.78 ppm) simulated by a parallel experiment without assimilating the OCO-2 retrievals and closer to the result of CT2017 (403.29 ppm). Independent CO2 flux and concentration measurements from towers, aircraft, and Total Carbon Column Observing Network (TCCON) were used to evaluate the results. Mean bias error (MBE) between the inverted CO2 flux and flux measurements was 0.73 g C m−2 d−1, was reduced by 22.34% and 28.43% compared to those of the prior flux and CT2017, respectively. MBEs between the CO2 concentrations estimated by the inversion system and concentration measurements from TCCON, towers, and aircraft were reduced by 52.78%, 96.45%, and 75%, respectively, compared to those of the parallel experiment. The experiment proved that CO2 emission hotspots indicated by the inverted annual CO2 flux with a relatively high spatial resolution of 50 km consisted well with the locations of most major metropolitan/urban areas in the contiguous United States, which demonstrated the potential of combing satellite observations with high spatial resolution CO2 flux inversion system in supporting the global stocktake.


2021 ◽  
Vol 13 (11) ◽  
pp. 2121
Author(s):  
Changsuk Lee ◽  
Kyunghwa Lee ◽  
Sangmin Kim ◽  
Jinhyeok Yu ◽  
Seungtaek Jeong ◽  
...  

This study proposes an improved approach for monitoring the spatial concentrations of hourly particulate matter less than 2.5 μm in diameter (PM2.5) via a deep neural network (DNN) using geostationary ocean color imager (GOCI) images and unified model (UM) reanalysis data over the Korean Peninsula. The DNN performance was optimized to determine the appropriate training model structures, incorporating hyperparameter tuning, regularization, early stopping, and input and output variable normalization to prevent training dataset overfitting. Near-surface atmospheric information from the UM was also used as an input variable to spatially generalize the DNN model. The retrieved PM2.5 from the DNN was compared with estimates from random forest, multiple linear regression, and the Community Multiscale Air Quality model. The DNN demonstrated the highest accuracy compared to that of the conventional methods for the hold-out validation (root mean square error (RMSE) = 7.042 μg/m3, mean bias error (MBE) = −0.340 μg/m3, and coefficient of determination (R2) = 0.698) and the cross-validation (RMSE = 9.166 μg/m3, MBE = 0.293 μg/m3, and R2 = 0.49). Although the R2 was low due to underestimated high PM2.5 concentration patterns, the RMSE and MBE demonstrated reliable accuracy values (<10 μg/m3 and 1 μg/m3, respectively) for the hold-out validation and cross-validation.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1207
Author(s):  
Gonçalo C. Rodrigues ◽  
Ricardo P. Braga

This study aims to evaluate NASA POWER reanalysis products for daily surface maximum (Tmax) and minimum (Tmin) temperatures, solar radiation (Rs), relative humidity (RH) and wind speed (Ws) when compared with observed data from 14 distributed weather stations across Alentejo Region, Southern Portugal, with a hot summer Mediterranean climate. Results showed that there is good agreement between NASA POWER reanalysis and observed data for all parameters, except for wind speed, with coefficient of determination (R2) higher than 0.82, with normalized root mean square error (NRMSE) varying, from 8 to 20%, and a normalized mean bias error (NMBE) ranging from –9 to 26%, for those variables. Based on these results, and in order to improve the accuracy of the NASA POWER dataset, two bias corrections were performed to all weather variables: one for the Alentejo Region as a whole; another, for each location individually. Results improved significantly, especially when a local bias correction is performed, with Tmax and Tmin presenting an improvement of the mean NRMSE of 6.6 °C (from 8.0 °C) and 16.1 °C (from 20.5 °C), respectively, while a mean NMBE decreased from 10.65 to 0.2%. Rs results also show a very high goodness of fit with a mean NRMSE of 11.2% and mean NMBE equal to 0.1%. Additionally, bias corrected RH data performed acceptably with an NRMSE lower than 12.1% and an NMBE below 2.1%. However, even when a bias correction is performed, Ws lacks the performance showed by the remaining weather variables, with an NRMSE never lower than 19.6%. Results show that NASA POWER can be useful for the generation of weather data sets where ground weather stations data is of missing or unavailable.


2021 ◽  
Author(s):  
Hiroshi Ohno ◽  
Takahiro Kamikawa

AbstractThe bidirectional reflectance distribution function (BRDF) that describes an angle-resolved distribution of surface reflectance is available for characterizing surface properties of a material. A one-shot BRDF imaging system can capture an in-plane color mapping of light direction extracted from a surface BRDF distribution. A surface roughness identification method is then proposed here using the imaging system. A difference between surface properties of a matt paper and a glossy paper is experimentally shown to be detected using the method. A surface reconstruction method of an axisymmetric micro-object using the imaging system is also proposed here. The imaging system experimentally shows that it can reconstruct an axisymmetric aluminium cone surface with a height of 37 μm.


Sign in / Sign up

Export Citation Format

Share Document