scholarly journals How Do Bacteria Produce Energy From Sunlight in the Deep Ocean?

2021 ◽  
Vol 9 ◽  
Author(s):  
Yuval Kolodny ◽  
Yossi Paltiel ◽  
Nir Keren

Photosynthesis, the process by which oxygen and sugars are created from water and carbon dioxide using the energy of the sun, is the basis of life on earth. To perform photosynthesis in changing light conditions, living creatures were required to adapt and develop sophisticated mechanisms to collect light efficiently. To understand these mechanisms, we studied the way blue-green algae (cyanobacteria), which perform photosynthesis in the sea, adapt themselves to changing light intensities, depending on the depth of the water. We found that in deep water where there is little light, the tiny antennas through which light is collected are bigger and longer. Surprisingly, although the energy is passing through a longer pathway, it actually passes faster. We found that cyanobacteria can control the energy transfer efficiency through their light-harvesting antennas by tuning the strength by which the antenna components are coupled to each other.

2020 ◽  
Vol 17 (4) ◽  
pp. 833-850
Author(s):  
Audrey Delpech ◽  
Anna Conchon ◽  
Olivier Titaud ◽  
Patrick Lehodey

Abstract. Micronekton – small marine pelagic organisms around 1–10 cm in size – are a key component of the ocean ecosystem, as they constitute the main source of forage for all larger predators. Moreover, the mesopelagic component of micronekton that undergoes diel vertical migration (DVM) likely plays a key role in the transfer and storage of CO2 in the deep ocean: this is known as the “biological pump”. SEAPODYM-MTL is a spatially explicit dynamical model of micronekton. It simulates six functional groups of vertically migrant (DVM) and nonmigrant (no DVM) micronekton, in the epipelagic and mesopelagic layers. Coefficients of energy transfer efficiency between primary production and each group are unknown, but they are essential as they control the production of micronekton biomass. Since these coefficients are not directly measurable, a data assimilation method is used to estimate them. In this study, Observing System Simulation Experiments (OSSEs) are used at a global scale to explore the response of oceanic regions regarding energy transfer coefficient estimation. In our experiments, we obtained different results for spatially distinct sampling regions based on their prevailing ocean conditions. According to our study, ideal sampling areas are warm and productive waters associated with weak surface currents like the eastern side of tropical oceans. These regions are found to reduce the error of estimated coefficients by 20 % compared to cold and more dynamic sampling regions.


2019 ◽  
Author(s):  
Audrey Delpech ◽  
Anna Conchon ◽  
Olivier Titaud ◽  
Patrick Lehodey

Abstract. Micronekton – small marine pelagic organisms mostly in the size range 1–10 cm – is a key component of the ocean ecosystem, as it constitutes the main source of forage for all larger predators. Moreover, the mesopelagic component of micronekton that undergoes Diel Vertical Migration (DVM) likely plays a key role in the transfer and storage of CO2 in the deep ocean: the so-called ‘biological pump’ mechanism. SEAPODYM-MTL is a spatially explicit dynamical model of micronekton. It simulates six functional groups of migrant and non-migrant micronekton, in the epipelagic and mesopelagic layers. Coefficients of energy transfer efficiency between primary production and each group are unknown. But they are essential as they control the predicted biomass. Since these coefficients are not directly measurable, a data assimilation method is used to estimate them. In this study, Observing System Simulation Experiments (OSSE) in the framework of twin experiments are used to test various observation networks at a global scale regarding energy transfer coefficients estimation. Observational networks show a variety of performances. It appears that environmental conditions are crucial to determine network efficiency. According to our study, ideal sampling areas are warm, non-dynamic and productive waters like the eastern side of tropical Oceans. These regions are found to reduce the error of estimated coefficients by 20 % compared to cold and dynamic sampling regions. The results are discussed in term of interactions between physical and biological processes.


1970 ◽  
Vol 23 ◽  
Author(s):  
M. Van Miegroet

A  certain number of measurable characteristics of tree leaves (morphological  characteristics, absorption of light radiation, intensity of respiration and  photosynthesis) are clearly linked with the presence of physiologically  active pigments in the leaves.     Leaf characteristics are highly and inequally influenced by changing  conditions of light environment, especially those related to light intensity,  light quality and duration of the daily illumination period. These  modifications do not only apply to light radiation as created under  laboratory conditions, but also to light conditions ensuing from the place in  the crown of a single tree, the social position of the tree in a forest stand  and the site factors in general.     There are also changes taking place due to the progression of the  vegetation period, at the end of which all species are less tolerant or more  light demanding. The reaction of the leaves towards light radiation out of  different regions of the spectrum is also different. The so-called blue light  radiation (λmax = 440 nm) seems to be of the greatest importance in this  relation, as species react quite different to its action.     The biggest variation in leaf characteristics due to changing light  environment was measured for oak and beech, which both react quickly and are  qualified as 'photolabile species'. No important variations occur in leaves  of ash and maple, which therefore are qualified as 'photostable species'.      As a consequence of variable reactions to changing light conditions, the  relationships between the species are continually modified, even in such a  way that their potential for dominance is not constant.     The classical division into tolerant and intolerant species or  classification of the species based upon the degree of light demand, is  highly inaccurate and it seems preferable to speak of relative light demands  and relative tolerance. All these observations and conclusions bring about a  clear confirmation of the necessity to recognize the individuality of the  single tree, the special character of each growth condition, the own  structure of each forest stand, the specific reaction to one sided  modifications of environmental factors. This is especially important for an  intensive sylvicultural practice.     They also prove the necessity for more physiological and biochemical  research to arrive at a better understanding of growth and its mechanism.      Sylviculture in fact must try to regulate, on an expanded scale, the  phenomens of growth, which is the exchange, absorption and transformation of  energy.     A practical interpretation and regulation of fundamental laws of physiology  and growth will be possible as soon as a clinical form of sylviculture is  created and the adequate instrumentarium developed.


2012 ◽  
Vol 71 (5) ◽  
pp. 699-711 ◽  
Author(s):  
Patricia Hornitschek ◽  
Markus V. Kohnen ◽  
Séverine Lorrain ◽  
Jacques Rougemont ◽  
Karin Ljung ◽  
...  

2021 ◽  
Vol 23 (12) ◽  
pp. 7495-7503
Author(s):  
Wanlin Cai ◽  
Kai Ren ◽  
Ancong Zhao ◽  
Xiulan Wu ◽  
Rongxing He ◽  
...  

Compared to the PtOO7-based system, the greater EQE of the PtON7-based system is mainly governed by the stronger energy transfer efficiency (ηEET); thus, it is necessary to evaluate ηEET from hosts to guests for the rational design of OLEDs.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 66
Author(s):  
Tianci Chen ◽  
Rihong Zhang ◽  
Lixue Zhu ◽  
Shiang Zhang ◽  
Xiaomin Li

In an orchard environment with a complex background and changing light conditions, the banana stalk, fruit, branches, and leaves are very similar in color. The fast and accurate detection and segmentation of a banana stalk are crucial to realize the automatic picking using a banana picking robot. In this paper, a banana stalk segmentation method based on a lightweight multi-feature fusion deep neural network (MFN) is proposed. The proposed network is mainly composed of encoding and decoding networks, in which the sandglass bottleneck design is adopted to alleviate the information a loss in high dimension. In the decoding network, a different sized dilated convolution kernel is used for convolution operation to make the extracted banana stalk features denser. The proposed network is verified by experiments. In the experiments, the detection precision, segmentation accuracy, number of parameters, operation efficiency, and average execution time are used as evaluation metrics, and the proposed network is compared with Resnet_Segnet, Mobilenet_Segnet, and a few other networks. The experimental results show that compared to other networks, the number of network parameters of the proposed network is significantly reduced, the running frame rate is improved, and the average execution time is shortened.


2017 ◽  
Vol 733 ◽  
pp. 42-46
Author(s):  
Habiba Shehu ◽  
Edidiong Okon ◽  
Edward Gobina

Shuttle tankers are becoming more widely used in deep water installations as a means of transporting crude oil to storage plants and refineries. The emissions of hydrocarbon vapours arise mainly during loading and offloading operations. Experiments have been carried out on the use of polyurethane/zeolite membrane on an alumina support for the separation of methane from carbon dioxide and oxygen. The physical properties of the membrane were investigated by FTIR. Single gas permeation tests with methane, propane, oxygen and carbon dioxide at a temperature of 293 K and pressure ranging from 0.1 to 1.0 x 10-5 Pa were carried out. The molar flux of the gases through the membrane was in the range of 3 x 10-2 to 1 x 10-1 molm-2s-1. The highest separation factor of CH4/CO2 and CH4/O2 and CH4/C3H8 was determined to be 1.7, 1.7 and 1.6 respectively.


Sign in / Sign up

Export Citation Format

Share Document