scholarly journals Nitrogen Dioxide Selective Sensor for Humid Environments Based on Octahedral Indium Oxide

2021 ◽  
Vol 2 ◽  
Author(s):  
Guillem Domènech-Gil ◽  
Isabel Gràcia ◽  
Carles Cané ◽  
Albert Romano-Rodríguez

We report the growth of micrometer-sized In2O3 octahedral structures, which are next aligned in chains using dielectrophoresis on top of microhotplates with prepatterned electrodes and integrated heater to work as chemoresistive gas sensors. The devices are relatively fast (180 s), highly sensitive (response up to ~256%), and selective toward NO2 in humid environments, showing little response to O2 and ethanol, and being completely insensitive to CO and CH4. The here-presented fabrication method can be easily extended as a cost-effective post-process in CMOS-compatible microhotplate fabrication and, thus, represents a promising candidate for indoor and outdoor air quality monitoring devices.

2011 ◽  
Vol 6 (3) ◽  
pp. 63-72 ◽  
Author(s):  
Jarmila Rimbalová ◽  
Silvia Vilčeková ◽  
Adriana Eštoková

2017 ◽  
Vol 38 (7) ◽  
pp. 963-966 ◽  
Author(s):  
Ai-Jun Yang ◽  
Da-Wei Wang ◽  
Xiao-Hua Wang ◽  
Ji-Feng Chu ◽  
Pin-Lei Lv ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (46) ◽  
pp. 26773-26779 ◽  
Author(s):  
Naraporn Indarit ◽  
Yong-Hoon Kim ◽  
Nattasamon Petchsang ◽  
Rawat Jaisutti

Low-cost effective real-time ammonia detector by a simple dip-coating a single polyester yarn with functional polyaniline.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1257 ◽  
Author(s):  
Xiaofei Liu ◽  
Xintai Su ◽  
Chao Yang ◽  
Kongjun Ma

In this paper, WO3·0.33H2O nanorods were prepared through a simple hydrothermal method using p-aminobenzoic acid (PABA) as an auxiliary reagent. X-ray diffraction (XRD) and transmission electron microscopy (TEM) images showed that the products with PABA addition were orthorhombic WO3·0.33H2O, which were mainly composed of nanorods with different crystal planes. The sensing performance of WO3·0.33H2O nanorod bundles prepared by the addition of PABA (100 ppm cyclohexene, Ra/Rg = 50.6) was found to be better than the WO3 synthesized without PABA (100 ppm cyclohexene, Ra/Rg = 1.3) for the detection of cyclohexene. The new synthesis route and sensing characteristics of as-synthesized WO3·0.33H2O nanorods revealed a promising candidate for the preparation of the cost-effective gas sensors.


2021 ◽  
Author(s):  
Kediliya Wumaier ◽  
Gulgina Mamtmin ◽  
Qingrong Ma ◽  
Asiya Maimaiti ◽  
Patima Nizamidin ◽  
...  

AbstractThe detection of hydrogen sulfide (H2S) is essential because of its toxicity and abundance in the environment. Hence, there is an urgent requisite to develop a highly sensitive and economical H2S detection system. Herein, a zinc phthalocyanine (ZnPc) thin film-based K+-exchanged optical waveguide (OWG) gas sensor was developed for H2S detection by using spin coating. The sensor showed excellent H2S sensing performance at room temperature with a wide linear range (0.1 ppm–500 ppm), reproducibility, stability, and a low detection limit of 0.1 ppm. The developed sensor showed a significant prospect in the development of cost-effective and highly sensitive H2S gas sensors.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 118
Author(s):  
Heayyean Lee ◽  
Ziwoo Jun ◽  
Zahra Zahra

Most of the world’s population is exposed to highly polluted air conditions exceeding the WHO limits, causing various human diseases that lead towards increased morbidity as well as mortality. Expenditures on air purification and costs spent on the related health issues are rapidly increasing. To overcome this burden, plants are potential candidates to remove pollutants through diverse biological mechanisms involving accumulation, immobilization, volatilization, and degradation. This eco-friendly, cost-effective, and non-invasive method is considered as a complementary or alternative tool compared to engineering-based remediation techniques. Various plant species remove indoor and outdoor air pollutants, depending on their morphology, growth condition, and microbial communities. Hence, appropriate plant selection with optimized growth conditions can enhance the remediation capacity significantly. Furthermore, suitable supplementary treatments, or finding the best combination junction with other methods, can optimize the phytoremediation process.


Sign in / Sign up

Export Citation Format

Share Document