scholarly journals Fate of the Gas-Phase Reaction Between Oxirane and the CN Radical in Interstellar Conditions

Author(s):  
Silvia Alessandrini ◽  
Mattia Melosso

The escalating identification of new complex molecules in the interstellar medium claims for potential formation routes of such species. In this regard, the present work considers the reaction between oxirane and the CN radical as a feasible formation mechanism of species having the C3H3NO molecular formula. Indeed, the compounds of this family are elusive in the interstellar medium and suggestions on which species could be formed at low temperature and low pressure conditions might aid their discovery. The c-C2H4O + CN reaction has been investigated from the thermodynamic and kinetic points of view. The thermodynamic has been studied by means of a double-hybrid density functional and revealed the presence of several mechanisms submerged with respect to the reactants energy, with the potential formation of oxazole and cyanoacetaldehyde. However, the kinetic results suggest that the main reaction pathway is the H-extraction, leading to 2-oxiranyl radical and HCN. The formation of cyanoacetaldehyde + H and of H2CCN + H2CO is also possible with smaller rate constants, while the production of oxazole is negligible due to the presence of a high energy barrier.

2020 ◽  
Vol 22 (9) ◽  
pp. 5057-5069 ◽  
Author(s):  
Jae-ung Lee ◽  
Yeonjoon Kim ◽  
Woo Youn Kim ◽  
Han Bin Oh

A new approach for elucidating gas-phase fragmentation mechanisms is proposed: graph theory-based reaction pathway searches (ACE-Reaction program) and density functional theory (DFT) calculations.


2015 ◽  
Vol 14 (03) ◽  
pp. 1550020 ◽  
Author(s):  
Yuan Yuan ◽  
Wei Hu ◽  
Xuhui Chi ◽  
Cuihua Li ◽  
Dayong Gui ◽  
...  

The oxidation mechanism of diethyl ethers by NO2was carried out using density functional theory (DFT) at the B3LYP/6-31+G (d, p) level. The oxidation process of ether follows four steps. First, the diethyl ether reacts with NO2to produce HNO2and diethyl ether radical with an energy barrier of 20.62 kcal ⋅ mol-1. Then, the diethyl ether radical formed in the first step directly combines with NO2to form CH3CH ( ONO ) OCH2CH3. In the third step, the CH3CH ( ONO ) OCH2CH3was further decomposed into the CH3CH2ONO and CH3CHO with a moderately high energy barrier of 32.87 kcal ⋅ mol-1. Finally, the CH3CH2ONO continues to react with NO2to yield CH3CHO , HNO2and NO with an energy barrier of 28.13 kcal ⋅ mol-1. The calculated oxidation mechanism agrees well with Nishiguchi and Okamoto's experiment and proposal.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 349 ◽  
Author(s):  
Changming Ke ◽  
Zijing Lin

The intrinsic mechanism of Ni-catalyzed methanol steam reforming (MSR) is examined by considering 54 elementary reaction steps involved in MSR over Ni(111). Density functional theory computations and transition state theory analyses are performed on the elementary reaction network. A microkinetic model is constructed by combining the quantum chemical results with a continuous stirring tank reactor model. MSR rates deduced from the microkinetic model agree with the available experimental data. The microkinetic model is used to identify the main reaction pathway, the rate determining step, and the coverages of surface species. An analytical expression of MSR rate is derived based on the dominant reaction pathway and the coverages of surface species. The analytical rate equation is easy to use and should be very helpful for the design and optimization of the operating conditions of MSR.


2008 ◽  
Vol 15 (03) ◽  
pp. 249-259 ◽  
Author(s):  
PATRICIA G. BELELLI ◽  
NORBERTO J. CASTELLANI

The addition of hydrogen to the carbon–carbon double bond of 2-butenes adsorbed on Pd (111) was studied within the density functional theory (DFT) and using a periodic slab model. For that purpose, the Horiuti–Polanyi mechanisms for both complete hydrogenation and isomerization were considered. The hydrogenation of cis and trans-2-butene to produce butane proceeds via the formation of eclipsed and staggered-2-butyl intermediates, respectively. In both cases, a relatively high energy barrier to produce the half-hydrogenated intermediate makes the first hydrogen addition the slowest step of the reaction. The competitive production of trans-2-butene from cis-2-butene requires the conversion from the eclipsed-2-butyl to the staggered-2-butyl isomer. As the corresponding energy barrier is relatively small and because the first of these isomers is less stable than the second, an easy conversion is predicted.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Akash Kothari ◽  
Linglan Zhu ◽  
Jon Babi ◽  
Natalie Galant ◽  
Anita Rágyanszki ◽  
...  

Background: Peptide bonds are among the fundamental building blocks of life, polymerizing amino acids to form proteins that make up the structural components of living cells and regulate biochemical processes. The detection of glycine by NASA in comet Wild 2 in 2009 suggests the possibility of the formation of biomolecules in extraterrestrial environments through the interstellar medium. Detected in the dense molecular cloud Sagittarius B2, acetamide is the largest molecule containing a peptide bond and is hypothesized to be the precursor to all amino acids; as such, viability of its formation is of important biological relevance. Methods: Under a proposed mechanism of ammonia and ketene reactants, which have also been detected in dense molecular clouds in the ISM, the reaction pathway for the formation of acetamide was modelled using quantum chemical calculations in Gaussian16, using Austin-Frisch-Petersson functional with dispersion density functional theory at a 6-31G(d) basis set level of theory to optimize geometries and determine the thermodynamic properties for the reaction. Stability of the reactants, transition states, and products were examined to establish a reasonable mechanism. Conclusion: Product formation of acetamide was found to be highly exergonic and exothermic with a low energy barrier, suggesting a mechanism that is viable in the extreme density and temperature conditions found in ISM.


2015 ◽  
Vol 93 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Pradeep Kumar Rao ◽  
Hari Ji Singh

In the present study, the density functional method with recently developed M06 functionals has been used to study the reaction of CF3OCH2CH3 with the OH radical. All possible hydrogen abstraction and displacement reaction channels have been modeled. The minimum energy path on the respective potential energy surface and energetics were calculated at the M06-2X/6-311++G(d,p) level of theory. Two different reaction mechanisms were considered: (i) reactant and product complexes called the complex mechanism and (ii) the direct mechanism (reactant → transition state → product). Tunneling corrections were made using the Eckart unsymmetrical potential. The overall rate constant calculated by the complex mechanism (keff = 1.8 × 10−13 cm3 molecule−1 s−1) has been found to be in good agreement with the experimentally determined value (1.5 ± 0.25 × 10−13 cm3 molecule−1 s−1), while the rate constant calculated by the direct mechanism (kD = 7.6 × 10−14 cm3 molecule−1 s−1) is about two times lower than the experimental value. The theoretical studies show that hydrogen atom abstraction from the –CH2– site is the most favorable reaction pathway and the reaction involves prereactive and product complexes before leading to stable product formation.


2020 ◽  
Vol 117 (3) ◽  
pp. 1330-1338 ◽  
Author(s):  
Baowen Zhou ◽  
Pengfei Ou ◽  
Nick Pant ◽  
Shaobo Cheng ◽  
Srinivas Vanka ◽  
...  

A rational design of an electrocatalyst presents a promising avenue for solar fuels synthesis from carbon dioxide (CO2) fixation but is extremely challenging. Herein, we use density functional theory calculations to study an inexpensive binary copper−iron catalyst for photoelectrochemical CO2 reduction toward methane. The calculations of reaction energetics suggest that Cu and Fe in the binary system can work in synergy to significantly deform the linear configuration of CO2 and reduce the high energy barrier by stabilizing the reaction intermediates, thus spontaneously favoring CO2 activation and conversion for methane synthesis. Experimentally, the designed CuFe catalyst exhibits a high current density of −38.3 mA⋅cm−2 using industry-ready silicon photoelectrodes with an impressive methane Faradaic efficiency of up to 51%, leading to a distinct turnover frequency of 2,176 h−1 under air mass 1.5 global (AM 1.5G) one-sun illumination.


2020 ◽  
Vol 493 (2) ◽  
pp. 2523-2527 ◽  
Author(s):  
J Enrique-Romero ◽  
S Álvarez-Barcia ◽  
F J Kolb ◽  
A Rimola ◽  
C Ceccarelli ◽  
...  

ABSTRACT The formation of interstellar complex organic molecules is currently thought to be dominated by the barrierless coupling between radicals on the interstellar icy grain surfaces. Previous standard density functional theory (DFT) results on the reactivity between CH3 and HCO on amorphous water surfaces showed that the formation of CH4 + CO by H transfer from HCO to CH3 assisted by water molecules of the ice was the dominant channel. However, the adopted description of the electronic structure of the biradical (i.e. CH3/HCO) system was inadequate [without the broken-symmetry (BS) approach]. In this work, we revisit the original results by means of BS-DFT both in gas phase and with one water molecule simulating the role of the ice. Results indicate that the adoption of BS-DFT is mandatory to describe properly biradical systems. In the presence of the single water molecule, the water-assisted H transfer exhibits a high energy barrier. In contrast, CH3CHO formation is found to be barrierless. However, direct H transfer from HCO to CH3 to give CO and CH4 presents a very low energy barrier, hence being a potential competitive channel to the radical coupling and indicating, moreover, that the physical insights of the original work remain valid.


2010 ◽  
Vol 09 (03) ◽  
pp. 561-571
Author(s):  
YONGZHONG OUYANG ◽  
ZHONGHAI TANG ◽  
YIZENG LIANG

Density functional theory (DFT) has been carried out to predict some possible decomposition pathways of polynitrotriprismanes C 6 H 6-n ( NO 2)n (n = 2, 4, 6) at B3LYP/6-31 + G (d, p) level. The calculated results (BDE298) suggest that the most preferred dissociation reaction for these compounds involves an initial rupture of C–C bond in the triprismane cage skeleton, followed by an opening of the second C–C bond of the intermediate to form nitro Dewar benzene, which has a similar reaction pathway as that of octanitrocubane. In addition, the predicted reaction energy shows that the whole decomposition reaction is exothermic, and the rupture of the second C–C bond is mainly the energy origin of these compounds. The predicted dissociation route for three selected PNNPs will be very helpful not only for synthesis of PNNPs, but also for characterization of other nitro-substituted high energy density materials (HEDMs).


2020 ◽  
Vol 644 ◽  
pp. A3
Author(s):  
M. Sanz-Novo ◽  
I. León ◽  
J. L. Alonso ◽  
A. Largo ◽  
C. Barrientos

Context. Cyanoacetamide is a –CN bearing molecule that is also an amide derivative target molecule in the interstellar medium. Aims. The aim of our investigation is to analyze the feasibility of a plausible formation process of protonated cyanoacetamide under interstellar conditions and to provide direct experimental frequencies of the ground vibrational state of the neutral form in the microwave region in order to enable its eventual identification in the interstellar medium. Methods. We used high-level theoretical computations to study the formation process of protonated cyanoacetamide. Furthermore, we employed a high-resolution laser-ablation molecular beam Fourier transform spectroscopic technique to measure the frequencies of the neutral form. Results. We report the first rotational characterization of cyanoacetamide, and a precise set of the relevant rotational spectroscopic constants have been determined as a first step to identifying the molecule in the interstellar medium. We fully explored the potential energy surface to study a gas-phase reaction on the formation process of protonated cyanoacetamide. We found that an exothermic process with no net activation barrier is initiated by the high-energy isomer of protonated hydroxylamine, which leads to protonated cyanoacetamide.


Sign in / Sign up

Export Citation Format

Share Document