scholarly journals Spatial Correlations Don't Predict Changes in Agricultural Ecosystem Services: A Canada-Wide Case Study

2020 ◽  
Vol 4 ◽  
Author(s):  
Matthew G. E. Mitchell ◽  
Kai M. A. Chan ◽  
Nathaniel K. Newlands ◽  
Navin Ramankutty

Improving the management of multiple ecosystem services (e.g., food provision, water and air quality regulation, carbon storage, and erosion control) in agricultural landscapes is a critical challenge to improve food system sustainability. However, we currently lack spatially-resolved national-level assessments of the relationships among services in agricultural landscapes over time. This limits our ability to make decisions and predict how environmental changes or agricultural management actions will impact multiple services. How do multiple ecosystem services vary across both space and time, at regional-to-national scales? To address this question, we quantified eight indicators of four ecosystem services across 290 Canadian agricultural landscapes in 1996, 2001, and 2006. We observed consistent correlations between pairs of services across the 290 ecodistricts in each of the 3 years of our study. In particular, ecodistricts with high livestock production had low provision of most regulating services, while ecodistricts with high air quality (ammonia retention) also had high soil and water quality regulation services. However, these ‘snapshot’ correlations poorly predicted how pairs of services changed through time. Ecosystem service change from 1996–2001 to 2001–2006 (as measured by pairwise correlations) showed markedly different patterns than snapshot correlations. In particular, where livestock production increased between years, so did most regulating services. Ecosystem service bundles also showed similar divergent patterns. The distribution of ecosystem service “snapshot” bundles—sets of ecodistricts with similar levels of provision across multiple ecosystem services in a single year—was generally stable between 1996 and 2006; only 15% of ecodistricts changed bundle types in this time period. However, ecosystem service “change” bundles—sets of ecodistricts with similar changes in ecosystem service provision through time—were much more dynamic. Nearly 60% of ecodistricts exhibited a different set of ecosystem service changes from 2001 to 2006 compared to 1996 to 2001. Our results add to the growing evidence that relationships between services across space do not necessarily predict service change through time. Improved understanding of the spatial patterns and temporal dynamics of ecosystem services, and better understanding of underlying processes, is crucial to improve agricultural landscape management for multifunctionality and sustainability.

Trees ◽  
2021 ◽  
Author(s):  
H. Pretzsch ◽  
A. Moser-Reischl ◽  
M. A. Rahman ◽  
S. Pauleit ◽  
T. Rötzer

Abstract Key message A model for sustainable planning of urban tree stocks is proposed, incorporating growth, mortality, replacement rates and ecosystem service provision, providing a basis for planning of urban tree stocks. Abstract Many recent studies have improved the knowledge about urban trees, their structures, functions, and ecosystem services. We introduce a concept and model for the sustainable management of urban trees, analogous to the concept of sustainable forestry developed by Carl von Carlowitz and others. The main drivers of the model are species-specific tree diameter growth functions and mortality rates. Based on the initial tree stock and options for the annual replanting, the shift of the distribution of the number of trees per age class can be predicted with progressing time. Structural characteristics such as biomass and leaf area are derived from tree dimensions that can be related to functions such as carbon sequestration or cooling. To demonstrate the potential of the dynamic model, we first show how different initial stocks of trees can be quantitatively assessed by sustainability indicators compared to a target stock. Second, we derive proxy variables for ecosystem services (e.g. biomass for carbon sequestration, leaf area for deposition and shading) from a given distribution of the number of trees per age class. Third, we show by scenario analyses how selected ecosystem services and functions may be improved by combining complementary tree species. We exercise one aspect (cooling) of one ecosystem service (temperature mitigation) as an example. The approach integrates mosaic pieces of knowledge about urban trees, their structures, functions, and resulting ecosystem services. The presented model makes this knowledge available for a sustainable management of urban tree stocks. We discuss the potential and relevance of the developed concept and model for ecologically and economically sustainable planning and management, in view of progressing urbanization and environmental changes.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Han Zhi-Ying ◽  
Youn Yeo-Chang

This paper aims to investigate the Beijing resident’s preferences over various options of urban forest management strategies. The literature investigation and expert Delphi method were conducted to classify the ecosystem services of urban forests into six categories: (1) fresh water provision, (2) noise reduction, (3) moderation of extreme events, (4) air quality regulation, (5) species diversity and wildlife habitat, and (6) recreation and spiritual experience. To elicit the relative preferences to ecosystem service (hereafter referred to as ES) of Beijing residents, we employed the choice experiment method. The data were collected by interviews with questionnaires conducted in October 2017, and a total of 483 valid questionnaires were analyzed. The subjects of this experiment were residents older than 19 years old who have lived in Beijing for more than 1 year and have visited any one of the urban forests located in Beijing more than once during 2016. The results were as follows: Firstly, the air quality regulation ES was considered as the most important service for Beijing residents in terms of their choices of urban forest. In addition, Beijing residents regarded the fresh water provision ES as the second most important ES. Beijing residents were willing to pay up to 1.84% of the average monthly income of Chinese households annually to expand urban forest ecosystems in order to improve air quality. Secondly, apartment owners were willing to pay more municipality tax for forest ESs than residents who did not own an apartment. Thirdly, residents were more willing to pay for urban forest ESs as their income increases. The results indicated that Beijing residents were willing to pay more tax in support of urban forestry for air quality improvement. This research suggests that urban environmental policy makers in Beijing should pay more attention to the regulation function of forests (especially improving air quality) when designing and managing urban forests.


2020 ◽  
Vol 12 (5) ◽  
pp. 2076 ◽  
Author(s):  
Zuzana Drillet ◽  
Tze Fung ◽  
Rachel Leong ◽  
Uma Sachidhanandam ◽  
Peter Edwards ◽  
...  

Urban vegetation is important in providing ecosystem services to people. Different urban vegetation types provide contrasting suites of ecosystem services and disservices. Understanding public perceptions of the ecosystem services and disservices can therefore play an important role in shaping the planning and management of urban areas. We conducted an online survey (n = 1000) to understand how residents in the tropical city of Singapore perceived urban vegetation and the associated ecosystem services and disservices. The questionnaire was designed to explore whether different urban vegetation types (grass, shrubs, trees, trees over shrubs, and secondary forest) were perceived as equal in providing benefits. Respondents considered ecosystem services provided by urban vegetation to be more important than disservices. Among ecosystem services, regulating services were most highly rated, with more than 80% of the respondents appreciating urban vegetation for providing shade and improving air quality. Respondents recognized that different vegetation types provided different ecosystem services. For example, secondary forest was most commonly associated with education and wildlife, while trees were strongly associated with cooling and air quality. We conclude that in developing plans and designs for urban vegetation and ecosystem services, it is important to understand the perceptions, priorities, and concerns of residents.


Land ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 245 ◽  
Author(s):  
Mario V. Balzan ◽  
Renata Sadula ◽  
Laura Scalvenzi

Agricultural landscapes in the Mediterranean region may be considered as social-ecological systems that are important for biodiversity conservation whilst contributing to a wide range of ecosystem services. This literature review aims to identify the current state and biases of ecosystem service assessment in agroecosystems within the Mediterranean region, evaluate pressures impacting on agroecosystems and their services, and practices that promote ecosystem service synergies in Mediterranean agroecosystems. A total of 41 papers were selected for analysis from a set of 573 potentially relevant papers. Most of the selected papers focused on supporting, regulating and provisioning services, and mostly assessed ecosystem structure or services in the European Mediterranean context. Literature about benefits and values ascribed to by communities and stakeholders remain limited. Results presented here support the notion of multifunctional Mediterranean agroecosystems and multiple synergies were recorded in this review. Publications dealing with pressures that related to agricultural practices and demographic changes were in the majority and impact on different cropping systems. This review highlights the need to carry out integrated ecosystem service assessments that consider the multiple benefits derived from agroecosystems and which may be used to identify management practices that lead to the improvement of ecosystem services capacities and flows.


2020 ◽  
Author(s):  
Jiashu Shen

<p>Understanding the relationships among multiple ecosystem services and their drivers is crucial for the sustainability of ecosystem services provision. Different ecosystem services were quantified using different models, and the relationships among ecosystem services and their drivers were analyzed using different statistical methods in the Beijing-Tianjin-Hebei urban agglomeration. Our results showed that the spatially concordant supply of regulating services and cultural services decreased from northwest to southeast, whereas the delivery of provisioning services decreased from southeast to northwest in the region. The provisioning service was  antagonistic with both the regulating services and the cultural service, and the relationships among the regulating services and the cultural service were mostly synergistic. Different combinations of ecosystems provided seven types of ecosystem services bundles with different compositions and quantities of ecosystem services. Different drivers had different impacts on different ecosystem services. On the basis of  our findings, we suggested that the features of ecosystem service relationships and their drivers should be considered to ensure the efficiency of the  management of natural capital.</p>


2021 ◽  
Author(s):  
Shixiong Song ◽  
Chunyang He ◽  
Zhifeng Liu ◽  
Tao Qi

Abstract Context Effectively estimating the influences of urban expansion on multiple ecosystem services (ESs) is of great importance for improving urban planning in drylands. However, there are some shortcomings in the existing urban expansion models, which lead to great uncertainties in the assessment of the influences of urban expansion on the concurrent loss of multiple ESs.Objectives This study sought to effectively estimate the influences of urban expansion on the concurrent loss of multiple ESs in drylands.Methods We combined the improved the urban expansion model and ES models to estimate the influences of urban expansion on five key ESs, including food production (FP), water retention (WR), air quality regulation (AQR), natural habitat quality (NHQ), and landscape aesthetic (LA).Results The results showed that (1) our method can effectively evaluate the influences of urban expansion on the concurrent loss of multiple ESs in drylands, and the accuracy increased by more than 20% on average. (2) Under the effect of future urban expansion, FP, WR, AQR, NHQ and LA will accelerate the decline. (3) These five ESs will show concurrent degradation, and the degree will be further intensified. (4) Future urban expansion will occupy more cropland and grassland which will be the dominating reason for the intensified degradation of multiple ESs. Conclusions We suggest that urban expansion through occupying a large amount of cropland and grassland should be strictly controlled via urban land planning to alleviate the potential influences of future urbanization on the concurrent loss of multiple ESs.


Land ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 330
Author(s):  
Marina García-Llorente ◽  
Antonio J. Castro ◽  
Cristina Quintas-Soriano ◽  
Elisa Oteros-Rozas ◽  
Irene Iniesta-Arandia ◽  
...  

Combining socio-cultural valuations of ecosystem services with ecological and monetary assessments is critical to informing decision making with an integrative and multi-pronged approach. This study examined differences in the perceptions of ecosystem service supply and diversity across eight major ecosystem types in Spain and scrutinized the social and ecological factors shaping these perceptions. First, we implemented 1932 face-to-face questionnaires among local inhabitants to assess perceptions of ecosystem service supply. Second, we created an ecosystem service diversity index to measure the perceived diversity of services considering agroecosystems, Mediterranean mountains, arid systems, two aquatic continental systems, coastal ecosystems and two urban ecosystems. Finally, we examined the influence of biophysical, socio-demographic and institutional factors in shaping ecosystem service perceptions. Overall, cultural services were the most widely perceived, followed by provisioning and regulating services. Provisioning services were most strongly associated with agroecosystems, mountains and coastal systems, whereas cultural services were associated with urban ecosystems and regulating services were specifically linked with agroecosystems, mountains and urban recreational areas. The highest service diversity index values corresponded to agroecosystems, mountains and wetlands. Our results also showed that socio-demographic factors, such as place of origin (urban vs. rural) and educational level, as well as institutional factors, such as management and access regimes, shaped the perception of ecosystem services.


2015 ◽  
Vol 49 (1) ◽  
pp. 97-114 ◽  
Author(s):  
Heather M. Leslie ◽  
Megan Palmer

AbstractAs governments from the local to national level have recognized the need to integrate renewable sources into their energy portfolios, there has been a recent push to harness diverse sources of ocean energy, including those generated by tides and waves. Despite the potential benefits, development of these marine and hydrokinetic (MHK) resources has raised concerns in terms of their potential socioeconomic and environmental impacts. An ecosystem services perspective offers a useful means of monitoring how MHKs will affect both people and nature by enabling the identification of the benefits provided by functioning ecosystems to people, including biodiversity, tourism and recreation, and food provision. To illustrate the value of this approach in evaluating the potential impacts of an MHK project, we present the case study of the Muskeget Channel Tidal Energy Project (United States) and identify the types of data and analytical tools that could be used to develop an ecosystem service assessment of MHK development in this study region. To complement this case study, we also reviewed the published literature on tidal energy and other MHK project types, which highlighted how little is known about the ecological effects of MHK development in coastal and marine ecosystems. Integrating ecosystem service knowledge into projects like Muskeget Channel can contribute to more scientifically informed MHK siting processes and more effective, ecosystem-based management of the diverse human activities undertaken in coastal and marine environments.


2021 ◽  
Vol 6 (2) ◽  
pp. 153
Author(s):  
La Baco Baco Sudia

Ecosystem services to regulate air quality, climate, water system and water purification are important ecosystem services for human life and other living things. The objective of the research was to analyze the distribution and value of ecosystem services index of air quality, climate, water system and water purification of Konawe Regency. This research was conducted through the study of ecoregion characteristics, covering landforms, natural vegetation types and land cover.  Data analysis includes the calculation of ecosystem services index and spatial distribution of ecosystem services index. The results showed that the dominant type of landform in Konawe Regency was the structural hills of metamorphic rock material with natural vegetation in the form of forests and the dominant land cover was primary dry land forests.The average value of the Ecosystem Services Index (ESI) of air quality regulation were 2.88 (medium), climate regulation and water system arrangements were 3.18 (medium) and 3.12 (medium) and water purification settings was 2.12 (low).  The average value of the ecosystem services index of the four types of regulatory services was 2.83 with a moderate category. The average ESI value of Sub District of Latoma, Asinua, Routa, Abuki and Meluhu were 3.92, 3.65, 3.62, 3.51 and 3.49 with high categories, respectively. The performance of environmental services of air quality regulation is dominated by a high category of 221,489.56 hectares or 41.99 percent, while climate regulation was dominated by a very high category of 243,516.50 hectares or 46.17 percent. The performance of ecosystem services of water system and water purification arrangements reached an area of 235,459.44 hectares or 44.64 percent and 32,723.16 hectares or 43.04 percent respectively.Keywords: ecoregion, ecosystem services index, regulating ecosystem services,spatial distributionJasa ekosistem pengaturan kualitas udara, iklim, tata air dan pemurnian air merupakan jasa ekosistem penting terhadap kehidupan manusia dan mahluk hidup lain. Penelitian ini bertujuan untuk menganalisis sebaran dan nilai indeks jasa ekosistem pengaturan kualitas udara, iklim, tata air dan pemurnian air Kabupaten Konawe.  Penelitian ini dilakukan melalui kajian karakteristik ekoregion, mencakup bentang lahan, tipe vegetasi alami dan tutupan lahan.  Analisis data meliputi perhitunganindeksjasaekosistem dan sebaranspasialindeksjasaekosistem. Hasil penelitian menunjukkan bahwa tipe bentang lahan yang dominan di Kabupaten Konawe adalah perbukitan structural lipatan bermaterial batuan metamorfik dengan vegetasi alami berupa hutanpamah (non dipterokarpa) dan tutupan lahan dominan adalah hutan lahan kering primer. Rata-rata nilai Indeks Jasa Ekosistem pengaturan kualitas udara adalah 2,88 (sedang), pengaturan iklim dan pengaturan tata air masing-masing sebesar 3,18 (sedang) dan 3,12 (sedang) dan pengaturan pemurnian air adalah 2,12 (rendah).  Nilai rata-rata indeks jasa ekosistem dari empat jenis jasa pengaturan tersebut adalah 2,83 dengan kategori sedang. Nilai IJE rata-rata Kecamatan Latoma yakni 3,92,  Kecamatan Asinua sebesar 3,65, KecamatanRouta sebesar 3,62, serta KecamatanAbuki dan KecamatanMeluhu masing-masing 3,51 dan 3,49 dengan kategori tinggi.  Kinerja jasa lingkungan pengaturan kualitas udara didominasi oleh kategori tinggi seluas 221.489,56 hektaratau 41,99%, sementara itu pengaturan iklim didominasi oleh kategori sangat tinggiseluas 243.516,50 hektaratau 46,17%.  Kinerja jasa ekosistem pengaturan tata air dan pengaturan pemurnian air mencapai luas masing-masing 235.459,44 hektaratau 44,64% dan 32.723,16 hektaratau 43,04%.Kata Kunci:ekoregion, jasa ekosistem pengaturan, indeks jasa ekosistem, sebaran spasial


Sign in / Sign up

Export Citation Format

Share Document