scholarly journals Ecosystem Impacts and Productive Capacity of a Multi-Species Pastured Livestock System

2020 ◽  
Vol 4 ◽  
Author(s):  
Jason E. Rowntree ◽  
Paige L. Stanley ◽  
Isabella C. F. Maciel ◽  
Mariko Thorbecke ◽  
Steven T. Rosenzweig ◽  
...  

Regenerative agriculture is a newly codified approach to agriculture that emphasizes reducing reliance on exogeneous inputs, as well as restoring and enhancing ecosystem services such as soil carbon (C) sequestration. These regenerative agriculture principles suggest that modern livestock systems can be redesigned to better capitalize on animals' ecological niche as biological up cyclers and may be necessary to fully regenerate some landscapes. One example is a multispecies pasture rotation (MSPR) system, which symbiotically stacks multiple animal production enterprises (i.e., chickens, cattle, sheep, and pigs) on one landscape. We conducted a whole-farm life cycle assessment (LCA) of an MSPR in the southeastern United States that was originally converted from degraded cropland. We compared the production outputs, greenhouse gas (GHG) emissions, land footprints, and soil health outcomes to a conventional, commodity (COM) production system of each respective species. Our 20-year MSPR chronosequence of soil C and other soil health indicators shows dramatic improvement since establishment, sequestering an average of 2.29 Mg C ha−1 yr−1. Incorporation of soil C sequestration into the LCA reduced net GHG emissions of the MSPR by 80%, resulting in a footprint 66% lower than COM. However, when comparing required land between the two systems for food production, MSPR required 2.5 times more land when compared to COM. Thus, while our model indicates that MSPR can simultaneously produce protein while regenerating land, a considerably greater land area is needed when compared to COM. Our results present an important yet paradoxical conclusion on land and food production balance. Should society prioritize an input-intensive, COM system that produces more food from a smaller yet degrading land base? Or, alternatively, should systems such as MSPR that produce less food on a larger, but more ecologically functional landscape be more highly prioritized? These complexities must be considered in the global debate of agricultural practice and land. Our results indicate MSPRs are a useful model for alternative livestock production systems with improved environmental outcomes, but in this study may present considerable land-use tradeoffs.

2021 ◽  
Author(s):  
Sylvia Vetter ◽  
Michael Martin ◽  
Pete Smith

<p>Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).</p><p>Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.</p><p>Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.</p>


2016 ◽  
Vol 13 (10) ◽  
pp. 2959-2969 ◽  
Author(s):  
Raphael Felber ◽  
Daniel Bretscher ◽  
Andreas Münger ◽  
Albrecht Neftel ◽  
Christof Ammann

Abstract. Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small near-neutral C budget: NECBtot −27 ± 62 and NECBpast 23 ± 76 g C m−2 yr−1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal-related fluxes. The comparison of the NECB results with the annual exchange of other GHG revealed CH4 emissions from the cows to be the major contributor in terms of CO2 equivalents, but with much lower uncertainty compared to NECB. Although only 1 year of data limit the representativeness of the carbon budget results, they demonstrate the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.


2019 ◽  
Vol 11 (14) ◽  
pp. 3908 ◽  
Author(s):  
Arnab Bhowmik ◽  
Surinder Singh Kukal ◽  
Debasish Saha ◽  
Harmandeep Sharma ◽  
Anu Kalia ◽  
...  

Identifying the importance of soil biology in different land use systems is critical to assess the present conditions of declining soil (C) and global land degradation while regulating soil health and biogeochemical nutrient cycling. A study was undertaken in a mixed watershed comprising of different land use systems (agricultural, grassland, agroforestry, and eroded); situated in the Shiwalik region in the foot hills of the lower Himalayas in India, a fragile ecosystem susceptible to land degradation. Soil samples from 0–15 and 15–30 cm depths were collected from these land use systems and analyzed for a suite of different soil health indicators, including physio-chemical soil properties, aggregate stability, soil microflora, and the enzymatic activities that are critical for nutrient cycling. Principal component analysis was used to group different land uses and understand their association with soil microflora, enzyme activities, and soil physio-chemical properties. We found that a greater number of soil microflora and enzymatic activities were associated with grassland and agroforestry land use systems. Aggregate-associated soil C correlated well with the soil microflora under different land use systems studied. The biplots revealed that the fungal:bacterial ratio (2 × 103–0.1 × 103) was a robust indicator of C accumulation and soil health, and was in greater association with the agroforestry land use system. Random forest, a non-parametric statistical test, on average explained that 68% to 92% of the variability in soil microbial population was due to land use and other soil health properties. Overall, the biological soil health indicators used in this study demonstrated the fact that land use management systems that employ constant crop cover with minimal disturbance have the potential to improve soil sustainability and ecological functioning.


2020 ◽  
Author(s):  
Virginia Sánchez-Navarro ◽  
Mariano Marcos-Pérez ◽  
Raúl Zornoza

<p><strong>Legume crops have been proposed as a way of reducing greenhouse gas (GHG) emissions because both, their rhizosphere behaviour and their ability to fix atmospheric N reducing the need of external N fertilizer. Moreover, the establishment of organic agriculture has been proposed as a sustainable strategy to enhance the delivery of ecosystem services, including mitigation of climate change by decreases in GHG emissions and increases in soil C sequestration. The aim of this study was to assess the effect of the association between cowpea (Vigna unguiculata L.) and melon (Cucumis melo L.) growing in different </strong>intercropping patterns <strong>on soil CO<sub>2</sub> and N<sub>2</sub>O emissions compared to cowpea and melon monocultures </strong><strong>under organic management as a possible strategy for climate change mitigation. Soil </strong><strong>CO<sub>2</sub> and N<sub>2</sub>O</strong><strong> emissions were weekly measured in melon and cowpea rows using the dynamic chamber method during one cropping cycle in 2019. Results indicated that melon growing as monoculture was related to increases in </strong> <strong>O cumulative emissions (0.431 g m<sup>-2</sup>) compared to the average of the rest of treatments (0.036 g m<sup>-2</sup>). Cowpea growing as monoculture was related to decreases in </strong><strong>CO<sub>2</sub></strong> <strong>cumulative emissions (390 g m<sup>-2</sup>) compared with the other treatments (512 g m<sup>-2 </sup>average). However, N<sub>2</sub>O and </strong><strong>CO<sub>2</sub></strong><strong> emission patterns did not directly follow soil moisture patterns in the experimental period, with no significant correlations. Finally there were no significant differences among intercropping treatments with regard to NO<sub>2</sub> and </strong><strong>CO<sub>2 </sub></strong><strong>emissions. Further measurements are needed to monitor the evolution of GHG emissions under these cropping systems and confirm the trend observed</strong>.</p>


Soil Research ◽  
2016 ◽  
Vol 54 (2) ◽  
pp. 254 ◽  
Author(s):  
Eva Erhart ◽  
Harald Schmid ◽  
Wilfried Hartl ◽  
Kurt-Jürgen Hülsbergen

Compost fertilisation is one way to close material cycles for organic matter and plant nutrients and to increase soil organic matter content. In this study, humus, nitrogen (N) and energy balances, and greenhouse gas (GHG) emissions were calculated for a 14-year field experiment using the model software REPRO. Humus balances showed that compost fertilisation at a rate of 8 t/ha.year resulted in a positive balance of 115 kg carbon (C)/ha.year. With 14 and 20 t/ha.year of compost, respectively, humus accumulated at rates of 558 and 1021 kg C/ha.year. With mineral fertilisation at rates of 29–62 kg N/ha.year, balances were moderately negative (–169 to –227 kg C/ha.year), and a clear humus deficit of –457 kg C/ha.year showed in the unfertilised control. Compared with measured soil organic C (SOC) data, REPRO predicted SOC contents fairly well with the exception of the treatments with high compost rates, where SOC contents were overestimated by REPRO. GHG balances calculated with soil C sequestration on the basis of humus balances, and on the basis of soil analyses, indicated negative GHG emissions with medium and high compost rates. Mineral fertilisation yielded net GHG emissions of ~2000 kg CO2-eq/ha.year. The findings underline that compost fertilisation holds potential for C sequestration and for the reduction of GHG emissions, even though this potential is bound to level off with increasing soil C saturation.


Author(s):  
A.J. Parsons ◽  
J.S. Rowarth ◽  
P.C.D. Newton

There has been growing interest in including soil carbon (C) sequestration, as an offset to greenhouse gas (GHG) emissions, within New Zealand's commitment to the Kyoto Protocol, even though national trends report soil C concentrations in many areas is declining. There are different schools of thought as to what drives changes in soil C (e.g. grazing management, fertiliser inputs, species) and so in our capacity to increase the rate of sequestration of C since 1990 to gain C credits.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 147-148
Author(s):  
Jason Rowntree ◽  
Paige Stanley ◽  
David Beede ◽  
Marcia DeLonge ◽  
Michael Hamm

Abstract Using life cycle analysis (LCA), several studies have concluded that grass-finished beef systems have greater GHG intensities than feedlot-finished (FL) beef systems. These studies evaluated only one grazing management system– continuous grazing – and assumed steady-state soil carbon (C), to model the grass-finishing environmental impact. However, by managing for more optimal forage growth and recovery, adaptive multi-paddock (AMP) grazing can improve animal and forage productivity, potentially sequestering more soil organic carbon (SOC) than continuous grazing. To examine impacts of AMP grazing and related SOC sequestration on net GHG emissions, a comparative LCA was performed of two different beef finishing systems in the Upper Midwest, USA: AMP grazing and FL. We used on-farm data collected from the Michigan State University Lake City AgBioResearch Center for AMP grazing. Impact scope included GHG emissions from enteric methane, feed production and mineral supplement manufacture, manure, and on-farm energy use and transportation, as well as the potential C sink arising from SOC sequestration. Across-farm SOC data showed a 4-year C sequestration rate of 3.59 Mg C ha−1 yr−1 in AMP grazed pastures. After including SOC in the GHG footprint estimates, finishing emissions from the AMP system were reduced from 9.62 to −6.65 kg CO2-e kg carcass weight (CW)−1, whereas FL emissions increased slightly from 6.09 to 6.12 kg CO2-e kg CW−1 due to soil erosion. This indicates that AMP grazing has the potential to offset GHG emissions through soil C sequestration, and therefore the finishing phase could be a net C sink. However, FL production required only half as much land as AMP grazing. This research suggests that AMP grazing can contribute to climate change mitigation through SOC sequestration and challenges existing conclusions that only feedlot-intensification reduces the overall beef GHG footprint through greater productivity.


2021 ◽  
Vol 51 (1) ◽  
pp. 78-88
Author(s):  
Rachel A. Kendall ◽  
Karen A. Harper ◽  
David Burton ◽  
Kevin Hamdan

Forested wetlands may represent important ecosystems for mitigating climate change effects through carbon (C) sequestration because of their slow decomposition and C storage by trees. Despite this potential importance, few studies have acknowledged the role of temperate treed swamps in the C cycle. In southwestern Nova Scotia, Canada, we examined the role of treed swamps in the soil C cycle by determining C inputs through litterfall, assessing decomposition rates and soil C pools, and quantifying C outputs through soil greenhouse gas (GHG) emissions. The treed swamps were found to represent large supplies of C inputs through litterfall to the forest floor. The swamp soils had substantially greater C stores than the swamp–upland edge or upland soils. We found growing season C inputs via litterfall to exceed C outputs via GHG emissions in the swamps by a factor of about 2.5. Our findings indicate that temperate treed swamps can remain a C sink even if soil GHG emissions were to double, supporting conservation efforts to preserve temperate treed swamps as a measure to mitigate climate change.


Author(s):  
Pasquale Arca ◽  
Enrico Vagnoni ◽  
Pierpaolo Duce ◽  
Antonello Franca

Highlights Extensification of dairy sheep systems provides an environmental benefit when soil C sequestration is considered. Extensification of dairy sheep systems determines lower environmental impact per hectare of utilized agricultural area. Enteric methane emissions are the main source of GHG emissions of the sheep milk life cycle. Carbon sequestration in permanent grasslands can considerably contribute to climate change mitigation.   Abstract A life cycle assessment (LCA) study of a transition from semi-intensive to semi-extensive Mediterranean dairy sheep farm suggests that the latter has a strong potential for offsetting greenhouse gas (GHG) emissions through the soil C sequestration (Cseq) in permanent grasslands. The extensification process shows clear environmental advantage when emission intensity is referred to the area-based functional unit (FU). Several LCA studies reported that extensive livestock systems have greater GHG emissions per mass of product than intensive one, due to their lower productivity. However, these studies did not account for soil Cseq of temporary and permanent grasslands, that have a strong potential to partly mitigate the GHG balance of ruminant production systems. Our LCA study was carried out considering the transition from a semi-intensive (SI) towards a semi-extensive (SE) production system, adopted in a dairy sheep farm located in North-Western Sardinia (Italy). Impact scope included enteric methane emissions, feed production, on-farm energy use and transportation, infrastructures as well as the potential C sink arising from soil Cseqwith respect to the emission intensity. In order to provide a more comprehensive analysis, we used the following FUs: 1 kg of fat and protein corrected milk (FPCM) and 1 ha of utilised agricultural area (UAA). We observed that the extensification of production system determined contrasting environmental effects when using different FUs accounting for soil Cseq. When soil Cseq in emission intensity estimate was included, we observed slightly lower values of GHG emissions per kg of FPCM in the SI production system (from 3.37 to 3.12 kg CO2 equivalents – CO2-eq), whereas a greater variation we observed in the SE one (from 3.54 to 2.90 kg CO2-eq). Considering 1 ha of UAA as FU and including the soil Cseq, the emission intensity in SI moved from 6,257 to 5,793 kg CO2-eq, whereas values varied from 4,020 to 3,299 kg CO2-eq in SE. These results indicated that the emission intensity from semi-extensive Mediterranean dairy sheep farms can be considerably reduced through the soil Cseq, although its measurement is influenced by the models used in the estimation.


2016 ◽  
Vol 56 (3) ◽  
pp. 585 ◽  
Author(s):  
Rachelle Meyer ◽  
Brendan R. Cullen ◽  
Richard J. Eckard

Sequestering carbon (C) in soil organic matter in grassland systems is often cited as a major opportunity to offset greenhouse gas (GHG) emissions. However, these systems are typically grazed by ruminants, leading to uncertainties in the net GHG balance that may be achieved. We used a pasture model to investigate the net balance between methane (CH4), nitrous oxide (N2O) and soil C in sheep-grazed pasture systems with two starting amounts of soil C. The net emissions were calculated for four soil types in two rainfall zones over three periods of 19 years. Because of greater pasture productivity, and consequent higher sheep stocking rates, high-rainfall sites were associated with greater GHG emissions that could not be offset by C sequestration. On these high-rainfall sites, the higher rate of soil organic carbon (SOC) increase on low-SOC soils offset an average of 45% of the livestock GHG emissions on the modelled chromosol and 32% on the modelled vertosol. The slow rate of SOC increase on the high-SOC soils only offset 2–4% of CH4 and N2O emissions on these high-rainfall sites. On low-rainfall sites, C sequestration in low-SOC soils more than offset livestock GHG emissions, whereas the modelled high-C soils offset 75–86% of CH4 and N2O emissions. Greater net emissions on high-C soils were due primarily to reduced sequestration potential and greater N2O emissions from nitrogen mineralisation and livestock urine. Annual variation in CH4 and N2O emissions was low, whereas annual SOC change showed high annual variation, which was more strongly correlated with weather variables on the low-rainfall sites compared with the high-rainfall sites. At low-soil C concentrations, with high sequestration potential, there is an initial mitigation benefit that can in some instances offset enteric CH4 and direct and indirect N2O emissions. However, as soil organic matter increases there is a trade-off between diminishing GHG offsets and increasing ecosystem services, including mineralisation and productivity benefits.


Sign in / Sign up

Export Citation Format

Share Document